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Abstract 

 

In the last decade, perovskite quantum dots have emerged as next-generation active 

materials for optoelectronics. They have tunable bandgaps, good charge carrier mobility and low 

defect density, and are readily synthesized. They exhibit high photoluminescence quantum yields 

and bandgaps tuned throughout the visible range via compositional engineering and nanostructure 

modulation. This positions perovskites for applications in red, green and blue light-emitting 

diodes. They must achieve narrow emission linewidths, as well as increased stability and 

efficiencies under operating conditions, to realize their potential in displays. 

In this thesis, I explore the design and prediction of novel perovskite materials through 

experimental and computational methods; and I find new optoelectronic materials with promise as 

narrowband light-emitters.  

Mixed anion approaches used by prior researchers to tune bandgap suffer from halide 

segregation and resultant spectral instability. I designed a mixed cation strategy whereby Rb+ is 

directly incorporated during synthesis into CsPbBr3 nanocrystals, forming the alloyed RbxCs1-

xPbBr3. This resulted in tunable blue-emitting perovskite quantum dots and devices with stable 

photoluminescence and electroluminescence ranging from 460 – 500 nm and narrow emission 

linewidths (< 25 nm). 
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I then investigated how a materials processing strategy involving dynamic post-synthesis 

organic phosphoryl treatment enables precise control of the distribution of nanostructured 

morphologies. I found that devices fabricated using the treatment exhibited improved spectral 

stabilities during operation, as well as record high efficiencies in blue.  

Finally, I investigate the application of machine learning to accelerate materials discovery, 

focusing in particular on ternary perovskite systems. I design deep neural network models that 

predict the bandgap accurately, and then use these for a rapid materials search aided by an 

evolutionary algorithm. Through feature analysis, I develop interpretable design rules from the 

resulting candidates, finding these to be predictive of the structural and optical properties. This 

enables the experimental realization of a set of novel perovskite UV-semiconductors with narrow 

emission linewidths and small Stokes shift.  
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1 

 

1 Introduction 
 

 

Global energy demand is projected to increase by an overall 24% from 2019 to 2040, 

largely driven by population growth and economic development.1 Lighting comprises roughly 

15% of global electricity consumption, resulting in 5% of global greenhouse gas emissions in light 

of the average carbon footprint associated with electricity generation.2 The lighting component of 

energy consumption will only increase as countries develop.  

As affluence and consumption grow, it is imperative to meet expanding energy demand 

with cleaner energy sources. Energy efficient and low-cost light-emitting materials can contribute 

to meeting growing demand for lighting but at lower energy-growth cost. 

Conventional lighting technologies comprising incandescent and compact fluorescent 

lamps exhibit limited luminous efficiencies of 10% and 50% that of current light-emitting diodes 

(LEDs), respectively as shown in Figure 1.1.3,4 LEDs also offer further improvements via low-

cost manufacturing and technological developments. Advances in materials design of the active 

layer, and in LED architecture, offer strategies to overcome present-day limitations such as non-

radiative losses, efficiency drop-off at high voltage bias and light extraction.5,6 

Applications of light-emitting materials are not exclusive to residential and commercial 

lighting, but also present in consumer electronics. Display technologies have become prevalent 

with the advent of smart devices and are expected to continue their rapid growth. As of 2019, 67% 

of the global population is subscribed to a mobile service, translating to 5.2 billion people globally 

and expected to continue growth in the coming years.7 The mobile industry is a $4.1US trillion 

dollar per year sector, representing 4.7% of the global gross domestic product, which includes the 

1.5 billion smartphones sold worldwide in 2019 alone.8,9 These statistics highlight the size of the 

market of display technologies and the relative economic importance globally.  
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Figure 1.1: Luminous efficiency of currently available lighting technologies, and projected future 

outlook1,3 

Advances which miniaturize smartphone display form factor, improve their stability, 

narrow the emission linewidths, and increase their efficiency have potential to improve user 

experience. This will rely on rapid materials development.10–12 To realize this technology and 

capture this increasing revenue, companies such as Samsung and Nanosys have directed their 

research efforts towards novel materials design.13  

Recently, colloidal quantum dots (CQDs) have emerged for solid-state light-emitting 

technologies owing much to their distinctive optoelectronic properties. Chalcogenide based CQD 

displays have already seen success in consumer electronics. They use the CQDs as colour 

converters in light of their narrow emission linewidths, positioning them as candidates replace 

organic molecules as an active material in future high-quality display technology.11 However, 

limitations in the operating efficiency and colour-purity remain a challenge for chalcogenide based 

CQDs to reach fully electroluminescent displays. Metal halide perovskites (MHPs) are one type 

of CQD nanomaterial where the underlying bulk crystal takes the form ABX3. Here, A and B 
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represent two cations bonded to a halide X, and the versatile elemental compositions possible, 

enables a wide set of materials with varying optical and structural properties. 

In this thesis, I seek to design and predict novel perovskite materials both 

experimentally and computationally with improved optoelectronic properties to realize their 

potential in light-emitting applications.  

In Chapter 2, I introduce the operating characteristics of light-emitting diodes such as 

various measures of efficiency and brightness; and I describe the measure of colour purity in light-

emitting materials via their CIE coordinates. In Chapter 3, I review quantum dots and their 

composition and chemical synthesis, introducing the perovskite subclass, and discussing how 

quantum confinement in these nanoscale morphologies respectfully defines their optoelectronic 

properties. Chapters 4-5 focus on experimental studies which addressed the need for improved 

colour purity and increased stability among efficient blue-emitters. My approach toward this goal 

utilizes Rb-doping of perovskite QDs and tailored post-synthetic ligand treatment in reduced 

dimensional perovskites. In Chapter 6, I discuss how experimental efforts, when combined with 

new computational models, enable accelerated semiconductor discovery – the studies I report in 

this chapter include the experimental realization of materials informed by the accelerated 

computational screening. I delve into how I was able to apply deep learning models and design 

graph-based neural networks coupled with an evolutionary search algorithm in order to increase 

throughput in exploring large materials spaces. I end Chapter 6 by discussing how the combined 

approach also enables the uncovering of novel chemical-physical principles and heuristic rules 

which aid in guided and efficient materials design. Finally, I present a summary of my findings in 

Chapter 7, and discuss future work that could offer the next step towards improved materials 

design. I also consider the future role of machine learning and big data in conjunction with 

experimental input to further advance materials innovation. 
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2 Semiconductor Physics and Light-Emitting Diodes 
 

In this chapter I provide a brief overview of the semiconductor physics in LEDs. I start with 

the pn-junction, the building block of a light-emitting diode. I then proceed to discuss the current-

voltage characteristics of an LED and conclude with the metrics used to measure the relative 

performance of LEDs and light-emitters.  

 

2.1 Semiconductors and the pn-Junction  

 

Semiconductors exhibit conductive behaviour that falls between that of a metal and an 

insulator. Semiconductors also exhibit a bandgap (Eg), which is the difference between the 

conduction band and the valence band. An intrinsic semiconductor is defined as an undoped 

semiconductor, exhibiting equal concentrations of (thermally) excited electrons and holes, in the 

conduction band and valence band respectively. However, the conductive properties of the 

intrinsic semiconductor can be precisely tuned by intentionally introducing impurities through 

techniques such as doping. This strategy inserts impurities in the form of acceptor ions or donor 

ions, giving rise to the p-type and n-type semiconductor, respectively. The p-type is described with 

an excess of holes in the form of acceptors, whereas the n-type is doped with excess electrons in 

the form of donors.  

In a junction between p and n materials, a space charge region forms. When no bias is applied 

and under thermal equilibrium, a built-in potential difference forms across the junction. Excess 

holes from the p-type diffuse into the n-type semiconductor, and excess electrons from n-type 

diffuse into the p-type. At the junction, this leaves a positively charged region in the n-type 

semiconductor and a negatively charged region in the p-type. The built-in field maintains the 

relative concentrations of the majority and minority charge carriers in both n-type and p-type 

semiconductors – corresponding to a net current of zero.  

When a voltage is applied to the pn-junction in the direction shown in Figure 2.1, a net 

flow of current is observed in the event that the applied voltage overcomes the built-in potential. 

This reduces the energetic barrier in the space charge region, and the flow of charge carriers 

enables radiative recombination to occur. Radiative recombination is the process by which an 

electron from the conduction band combines with a hole in the valence band producing a photon 

of energy equivalent to this difference – the bandgap. This process is facilitated with increasing 
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applied voltage, as it further lowers the built-in potential charge carriers need to overcome and 

participate in recombination. The Shockley diode equation (Equation 2.1) describes the current-

voltage (I-V) behaviour of the pn-junction when connected to an external power source in either 

forward or reverse bias as depicted Figure 2.1. 

 

Figure 2.1: Architecture of a pn-junction, the I-V characteristics of a diode showing the forward 

and reverse bias portions when operating at different voltages, circuit device representation.  

𝐼 =  𝐼𝑠 (𝑒
𝑉𝐷

𝑛𝑉𝑇 − 1) (2.1) 

- 𝐼 [𝐴]: diode current in amperes, or current density (𝐽, [
𝐴

𝑢𝑛𝑖𝑡 𝑎𝑟𝑒𝑎
]); 

- 𝐼𝑠  [𝐴]: reverse bias saturation current in amperes; 

- 𝑉𝐷 [𝑉]: Applied voltage across the diode in volts; 

- 𝑉𝑇 [𝑉]: Thermal voltage in volts, 𝑉𝑇 =
𝑘𝐵𝑇

𝑞
, 𝑘𝐵 = 𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡; 

- 𝑛: Diode ideality factor which falls within the range of [1,2] (ideal case = 1) 

 

2.2 LED Current-Voltage Characteristics 

 

In the context of LEDs, when a positive voltage is applied the built-in potential is reduced. At the 

threshold when the applied voltage overcomes the built-in potential, a net flow of current is 

observed. Ideally, the net current will increase linearly with increased voltage-bias and therefore 
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lead to higher recombination rates, generating light in the process. The output light intensity of the 

LED in the active region/layer will also approximately follow a linear relationship; however, a 

plateau is exhibited in many instances due to non-radiative losses and degradation mechanisms. 

This occurs at high applied voltages and has been a limiting factor in device performance. Below 

are examples of three different LED measurements which evaluate the device under operation. 

Specifically, in Figure 2.2, a) normalized emission spectra is shown, b) ideal output light intensity 

as a function of input current illustrates a linear relationship between the light intensity and current 

and c) applied voltage vs. current in the LED after the built-in potential is overcome showing the 

positive relationship.  

 
Figure 2.2: Characteristics of an LED in operation (when applied voltage overcomes the built-in 

potential, and is said to be turned on). (a) The emission spectra of a red LED centered at 655 nm 

with a linewidth of 24 nm; (b) Linear relationship of output light intensity as a function of the input 

current; (c)  relationship between the applied voltage and current.14 

2.3 Evaluation Metrics of Light Emitters 

 

2.3.1 Luminance 

 

Luminance is the quantity of luminous intensity per unit area of light which is travelling in 

a specific direction reported in units of cd m-2. It is used to characterize the emission from a given 

object and represents the luminous flux per unit of projected source area. It is the photometric 

measure of the brightness of a display – “photometric” entails that it considers the relative 

sensitivity of the eye as a function of wavelength due to the rods and cones which sense the light. 

The displays found in computers and smartphones today have reached operating steady state 

luminance values in the ranges of 100 to 500 cd m-2.11 
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2.3.2 External Quantum Efficiency - EQE 

 

The external quantum efficiency is a measure of output optical quanta per input of electrical 

quanta that flow into the device. It takes account of photon reabsorption, Fresnel loss and critical 

angle loss of the device and represents the ratio of the rate of photons emitted to the rate of total 

carriers lost. The metric accounts for the internal quantum efficiency of the active luminescent 

material, responsible for producing the photons (and defined as the number of photons emitted per 

second over the total number of carriers lost per second, under electron-hole recombination with a 

value ranging from 0 to 1).   

 

 𝜂𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 = 𝐸𝑄𝐸 =
𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃ℎ𝑜𝑡𝑜𝑛𝑠 𝐸𝑚𝑖𝑡𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑎𝑟𝑟𝑖𝑒𝑟𝑠 𝑖𝑛 𝐷𝑒𝑣𝑖𝑐𝑒
=  

𝑃𝑜𝑢𝑡/ℎ𝑣

𝐼/𝑒
 (2.2) 

 

 

2.3.3 Photoluminescence Quantum Yield – PLQY  

 

The photoluminescence quantum yield (PLQY) is metric that explains how efficient the 

light-emission process is of a luminescent material and measured as the fraction of total photons 

emitted per photon absorbed. It is defined as the ratio of the rate of radiative recombination to the 

rate of all other processes including non-radiative transitions in photoluminescence. In LEDs, the 

efficiency is directly impacted by the efficiency of the active material used for generating the 

electroluminescence. Therefore, a direct positive correlation exists between device performance 

and PLQY, and maximizing this quantity leads to improved efficiencies of the resulting solid-state 

devices.   

𝑃𝐿𝑄𝑌 =
𝑟𝑟

𝑟𝑛𝑟 + 𝑟𝑟
=

𝜏𝑟
−1

𝜏𝑛𝑟
−1 + 𝜏𝑟

−1
(2.3) 

2.3.4 Colour Purity 

 

The human eye is constructed from a set of cones which can distinguish the wavelength of 

light. Three cones exist and each one exhibits a corresponding sensitivity which peak at three 

different wavelengths, leading to the definition of the primary colours (red, green, blue). In 1930, 

experiments were performed to determine the link between the wavelengths of light and the 

perceived colours of the human eye.15,16 This led to the development of a the colour matching 

functions and the CIE1931 colour space (defined by terms of X, Y, and Z Tristimulus values) by 

the Commission Internationale de l’éclairage (CIE).17  
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The International Telecommunications Union Radiocommunication (ITU-R) which 

governs the information and communications technology sector (in the United Nations) sets 

recommendation standards for a variety of applications in consumer electronics.18–20 In the area of 

high-quality displays and a measure of colourimetry, the ITU-R developed a Rec. 2020 

specifications set of monochromatic wavelengths for the three colour pixels comprising ultra-high-

definition televisions and displays. The monochromatic wavelengths are also reported in CIE 

colour coordinates which are an ideal two-valued tuple used to compare various light sources for 

colour purity. Table 2.1 tabulates the standards below21: 

 

Table 2.1: Rec.2020 Standards for colour recommendations for ultra-high definition displays  

Colour Wavelength (nm) CIEx CIEy 

Red 630 0.708 0.292 

Green 532 0.170 0.797 

Blue 467 0.131 0.046 

 

 ITU-R recommendations seek to maximize the complete set of colours visible to the human 

eye by expanding the overall list of possible combinations comprised of these three “primary” 

colours. Tristimulus values can then be used to calculate the CIE coordinates and mapped to the 

corresponding wavelength on the 1931 Chromaticity Chart. Reversibly, the measured 

photoluminescence or electroluminescence spectra can be converted into the CIE1931 coordinates 

by first computing the Tristimulus values (𝑋, 𝑌, 𝑍).22  

 

These are calculated as the product of 𝜙(𝜆) (a spectral power distribution) and each 

corresponding colour matching function, and integrated over the wavelength range of [390, 780] 

nm. The colour matching functions model the chromatic response of a human observer for the 

various wavelengths and account for a particular viewing angle.  

𝑋 =  ∫ �̅�(𝜆)𝜙(𝜆)𝑑𝜆
𝜆

(2.4) 

𝑌 =  ∫ �̅�(𝜆)𝜙(𝜆)𝑑𝜆
𝜆

 (2.5) 

𝑍 =  ∫ �̅�(𝜆)𝜙(𝜆)𝑑𝜆
𝜆

 (2.6) 
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-  𝜙(𝜆): the luminescence profile as measured by the light intensity (number of photons 

emitted) as a function of wavelength  

- �̅�(𝜆), �̅�(𝜆) and �̅�(𝜆): individual CIE colour matching functions, representing the red, green 

and blue components of the optical response functions of the eye respectively 

 

Once the tristimulus values have been calculated, the CIE coordinates are computed which 

then enable an additional set of parameters to compare emission spectra and determine colour 

purity of differing luminescence spectra.  

𝐶𝐼𝐸𝑥 =
𝑋

𝑋 + 𝑌 + 𝑍
 (2.7) 

 

𝐶𝐼𝐸𝑦 =
𝑌

𝑋 + 𝑌 + 𝑍
 (2.8) 

 
𝐶𝐼𝐸𝑧 = 1 − 𝑥 − 𝑦 (2.9) 

 

However, in practice colour purity of light-emitters is often reported using the full-width 

at half-maximum value (FWHM) calculated from an emission spectrum (photoluminescence, 

electroluminescence, etc.). Often a Gaussian distribution is used to model the emission and hence 

allow for an approximate estimation of this dispersion measure. If a normal distribution is assumed 

(Equation 2.10), the FWHM is the width of the spectra when the amplitude is at half the peak 

value and can be calculated as follows:  

 

𝑓(𝑥) =
1

√2𝜋𝜎
𝑒−

1
2(

𝑥−𝑥0
𝜎 )

2

  (2.10) 

𝐹𝑊𝐻𝑀 = 2 √2𝑙𝑛2𝜎 (2.11) 

 

 

Here it follows that 𝜎 is the standard deviation, and 𝑥0 is the central peak wavelength, 

ideally from one emission profile. This is illustrated in Figure 2.3 as a sample example, illustrating 

the FWHM of a normalized and ideal Gaussian profile.  
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Figure 2.3: Example of a simulated Gaussian emission spectra, centered at 460 nm with a FWHM 

of 25 nm.  

In the context of blue emitters (Table 2.2), the target emission should ideally be centered 

at 467 nm and, and by achieving a narrow full-width at half-maximum (FWHM< 25 nm) and 

minimal red tail, meet the CIE colour coordinate: [(xblue = 0.131, yblue = 0.046)]. Red tails, which 

lie above the Gaussian profile in the emission spectra are detrimental as they limit the ability to 

produce colour pure devices.  

 

Table 2.2: Test case and comparison of simulated Gaussian profiles relative to the ITU-R 

Rec.2020 blue coordinate. 

 Wavelength  

(nm) 

FWHM 

(nm) 

Standard Deviation (nm) 

𝝈 =
𝑭𝑾𝑯𝑴

𝟐√𝟐𝒍𝒏𝟐
 

CIE 

(x,y) 

Target Blue 

(Rec.2020) 

467 - - (0.131, 0.046) 

Gaussian 1 467 25 10.62 (0.122, 0.076) 

Gaussian 2 460 25 10.62 (0.133, 0.051) 

 

 

Modelling the emission with a high degree of accuracy in physical systems such as 

quantum dots is poor due to the non-ideal conditions of synthesis resulting in inhomogeneous 

broadening and non-Gaussian distributions. To add complexity, emission profiles are not a 

stationary process and evolve over time. Therefore, improvements in developing a standard metric 
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to measure device performance in terms of colorimetry were established by the scientific 

community and industry and are continuously updated by organizations such as the ITU-R.  

 

CIE Chromaticity Chart  

 

To demonstrate this method of colour-purity, I computed the CIE coordinates of three PQD 

solutions from their corresponding PL spectra. I plot these and compare them to the standardized 

Rec.2020 as a reference (black lines and triangles, Figure 2.4). Ideally, to maximize the colour 

gamut of a display, the LED spectra should approach the vertices of the colour space and be as 

close as possible to the Rec.2020 standards. For blue-emitters this is achieved by extremely narrow 

linewidths and emissions centered at 467 nm,  

 

 
Figure 2.4: CIE plot of three colloidal quantum dot solutions, and the recommended standard for 

ultra-high-quality displays as suggested by ITU-R.  
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2.4 Summary 

 

In this chapter, I introduced the pn-junction – the foundation for LEDs, and the various 

metrics used to characterize the performance of these devices. In the following chapter, I introduce 

colloidal quantum dots and perovskites. I present the structural and optical properties of these 

systems and their application in solution-processed devices. The concepts presented in chapter 2 

and 3 will be the basis for the further advances of the findings throughout the rest of the thesis.   
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3 Colloidal Quantum Dots and Perovskites 
 

3.1 Colloidal Quantum Dots 

 

Colloidal quantum dots (CQDs) are semiconductor nanoparticles which have attracted 

interest in the last decade owing much to their distinctive optoelectronic properties. These particles 

typically exhibit length scales of 1 nm – 10 nm and are smaller than the exciton Bohr radius of 

their bulk counterpart, leading to quantum confinement. The consequence of this is that CQDs 

exhibit size- and composition-dependent optoelectronic properties, offering tailored applications 

in lasing, light-emission and harvesting and photodetection. An inverse relationship exists between 

the quantum dot size and bandgap as shown in Figure 3.1. As the quantum dot size decreases, the 

bandgap increases, shifting to higher energies and shorter wavelengths. The bandgap is also a 

function of the elemental composition which can exist as a binary, ternary or quaternary system. 

Chalcogenide quantum dots (CdSe, ZnSe and In(Ga)P, and InP) are one of the most widely studied 

set of materials, recently paving the way for companies such as Samsung to adopt their use as 

colour converters for displays in consumer electronics.10 Tunability of bandgap enables in precise 

tailoring of the photoluminescence and absorption peaks throughout the entire electromagnetic 

spectrum.  

 

Figure 3.1: Energy band diagrams of semiconductor quantum dots highlighting the bandgap as a 

function of size. Reprinted with permission from Reference23 , The Journal of Physical Chemistry 

Letters 2017 8 (17), 4077-4090) 
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Facile solution-processing techniques positions CQDs as alternatives to high-temperature 

processed conventional epitaxial materials for display technologies in light of their low-cost 

manufacturability and compatibility with flexible substrates.24 In this Chapter, I review the 

synthesis of CQDs and their various geometries and introduce a special class of CQD materials 

which will be the main system studied throughout the thesis – perovskites.  

3.2 Synthesis and Film Fabrication 

 

One of the most prevalent methods to synthesize quantum dots include the hot-injection 

method pioneered by C. Murray, D. Norris and M. Bawendi in 1993.25 Hot-injection synthesis has 

become the mainstay of synthesizing colloidal dispersions of quantum dots, applicable in 

chalcogenide and perovskite systems. Hot-injection produces semiconductor quantum dots via a 

two-stage process: rapid nucleation and controlled particle growth. This begins by dissolving the 

constituent starting precursors of desired material in a coordinating solvent at elevated 

temperatures with the addition of organic ligands. The role of the organic molecule is to produce 

a reactive organometallic species enabling aggregation and initiation of the starting nuclei. In the 

nucleation stage, these organometallic precursor solutions are rapidly injected into a coordinating 

solvent at elevated temperatures to initiate particle growth. The organic molecules are also 

responsible for stabilizing the semiconductor nanoparticles during growth as they attach to the 

quantum dot surface producing a colloidal dispersion. Following injection and after nucleation, 

particle growth proceeds through a homogeneous diffusion-controlled process, whereby smaller 

QDs grow at a faster rate relative to their larger counterparts, narrowing the size distribution of the 

resulting species.26 Over time as the precursor concentration decreases, particle growth plateaus 

and the resulting solution contains a relatively monodisperse set of nanoparticles. One main 

advantage of hot-injection synthesis is the versatility and tunability it provides as a function of the 

reaction conditions. Adjusting the reaction temperatures, reaction time, concentrations of the 

precursors and surfactants leads to various nanostructured quantum dots with tailored 

optoelectronic properties.27,28 For this reason, hot-injection synthesis has been employed to 

synthesize chalcogenide II-VI, III-V and perovskite quantum dots.  

After the synthesis, thin films of CQDs can be fabricated to form uniform layers of the 

semiconducting material for applied use in devices. Examples of thin-film deposition techniques 

include chemical bath, spin-coating, dip-coating, doctor blade, metering rod, spray-coating, 

screen-printing, inkjet printing and aerosol jet spraying to name a few.29 In the laboratory setting, 
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spin-coating has widely been adapted as the typical method for high through-put device 

fabrication. 

 

3.3 Solution-Processed LEDs 

 

The architecture of a typical thin-film LED is shown in Figure 3.2. The device is comprised 

of a transparent conductive electrode – TCO, (ITO, indium tin oxide), an electron transport 

layer/hole blocking layer (ETL, TBPi), the active luminescent (semiconductor, quantum dot, 

organic molecule) material responsible for producing light, a hole transport layer/electron blocking 

layer (HTL, PEDOT:PSS/Poly-TPD), and a top metal contact (LiF/Al). The transparent electrode 

provides the conductivity and transparency required for efficient charge injection and photon 

extraction. Charge carriers are injected from electrodes into the active material, which undergo a 

radiative transition, resulting in the emission of a photon with an energy equal to the material 

bandgap. Efficient LEDs are obtained by an improvement in the charge carrier injection, facilitated 

by two additional layers that sandwich the active material and act as electron blocking and hole 

blocking barriers. This allows electrons to be injected from one side, and not overflow past the 

active layer (blocking function of the HTL); symmetrically for holes.  

 
Figure 3.2: Schematic of a typical thin-film LED, showing the various components.  

3.4 Industrial Relevance of Solution Processed LEDs: 

 

Solution-processed LEDs offer lighting and display technologies at lower costs.29,30 

Examples of such technologies include organic LEDs (OLEDs), quantum dot LEDs (QLEDs), and 

more recently perovskite LEDs (PeLEDs). Though, performance of these devices is inferior to that 

of the LCD technologies currently dominating the display industry. OLEDs have recently become 



 

16 

 

widespread in modern-day smartphone and television displays, leading to thinner displays. One 

limitation of organic molecules is the broad emission linewidths which exceed 40 nm31, limiting 

their applicability as colour pure devices. Blue-emitting organics have lagged in operational 

stability, displaying lifetimes one order of magnitude shorter than their green and red 

counterparts.32  

Colloidal quantum dots offer an alternative to organic molecules, displaying narrower 

emission linewidths due to quantized energy levels, leading to more purer colours as shown in 

Figure 3.3.33 However, CQDs require surface passivation by an organic ligand or inorganic shell 

to reduce these defect states. Defects are detrimental to the optoelectronic efficiency of the 

material, reducing charge injection and hence limiting efficient recombination of the charge 

carriers– an essential for light-emission. The stability of QLEDs is lower than that of OLEDs 

making current QLEDs unfit for commercial implementation. The blue QLED exhibits operating 

lifetimes of 30 minutes before degrading to 50% of its initial luminance.34 Relative to organics, 

QLEDs are a nascent technology, and as such, much remains to be investigated to improve their 

performance and stability.  

 
Figure 3.3: Figure is reprinted with permission (Reference 33, Copyright (2016) National 

Academy of Sciences) 

 

 

 



 

17 

 

3.5 Perovskites – An Emerging Semiconductor  

 

Metal halide perovskites (MHPs) are an emerging class of CQD nanomaterials of the 

typical form ABX3 (ternary composition, although quaternary and higher exist) as illustrated in 

Figure 3.4. In the ternary case, A+ and B2+ represent two metal cations bonded to an anion X-, 

forming a variety of crystals structures (two of the most common shown below). Perovskites 

possess three main characteristics for optoelectronics: 

1. Facile solution processing, resulting from low chemical activation barriers35; 

2. Defect tolerance, a consequence of low probability of existing mid-gap trap states and 

efficient charge carrier mobilities36; 

3. Tunability of their optical properties, achieved by quantum confinement or by 

compositional engineering (substituting and alloying the A, B, X constituents in the 

crystal)35,37.  

It is this combination of multiple properties that has led to their application in light-emitting 

devices30,38, lasers39,40, photovoltaics41–43 and photodetectors44.  Perovskites have been investigated 

for photovoltaic applications over the past 10 years, leading to the most rapid progress in 

photovoltaic performance ever observed and have no sight of subsiding in the field of 

optoelectronics.45  

 

Figure 3.4: Typical inorganic perovskite crystal structures take the form of an ideal cubic (A’BX3) 

and orthorhombic (ABX3) configuration. In both cases, A’+, A+, and B2+ represent three different 

cations, which are bound an anion element X-. In the common ABX3 formula, the A/A’ cation is 

surrounded by BX6 octahedra. The orthorhombic crystal structure displays tilting of the BX6 

octahedra as a result of the ionic radii of the A-site radii, influencing the bonding within the overall 

structure and deviation from the ideal cubic structure.  



 

18 

 

3.6 Nanostructured Geometries of Perovskites  

 

Perovskite quantum dots exist in the 3D crystal lattice of the typical form ABX3 and 

crystallize in a multitude of structures, offering spatial confinement in all three principal directions. 

Recent studies have shown that reducing the dimensionality of the perovskite towards 2D, 

commonly referred to as nanoplates, opens up new avenues to apply nanostructured geometries.46 

This is achieved when the typical perovskite structure incorporates organic molecules leading to 

the formation of hybrid perovskite materials which exhibit quantum tunable optical properties, just 

as in the case of QDs.43 They have shown to exhibit the superior optoelectronic properties of their 

inorganic PQD counterparts – namely facile solution-processing at room-temperatures.  

 

In the case of these 2D nanostructures, quantum confinement is achieved in one direction, 

where a molecular spacer acts as an intercalating ligand separating the distinct perovskite layers. 

The building block of these structures take the form of A’mAn-1BnX3n+1, whereby A’m represents 

an organic divalent ligand (m = 1) or a monovalent (m = 2) cation species, A represents a mono 

valent organic or inorganic cation, B a divalent metal cation and X an anionic species such as the 

set of halides. The value n in this formula represents the number of perovskite layers within a given 

quantum well – and thereby leads to the observed bandgap of the material. The edge cases of n = 

1 and n → ∞ are classified as the 2D and 3D system as demonstrated in Figure 3.5. A special case 

exists which includes n > 1, whereby finetuning the constituent elements comprising of the system 

allow for quasi-2D geometries to be designed. Choice of ligand, solution temperatures, annealing 

protocols and precursor ratios are examples of variables which can be controlled to produce novel 

nanostructures of perovskites.  
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Figure 3.5: Crystal structures of 2D perovskites and 3D perovskites, as increasing organic ligands 

finetune the quantum confinement. 2D Quantum wells are formed when the intercalating organic 

ligand species acts as a spacer, creating well-defined sheets, enabling various geometries to be 

formed via the functional groups of the organic compound. Reprinted with permission from (J. 

Am. Chem. Soc. 2019, 141, 3, 1171-1190, Reference 46). Copyright (2019) American Chemical 

Society. 

 

3.7 Limitations in Blue Perovskite LEDs 

 

3.7.1 Spectral Stability  

 

PeLEDs offer narrow linewidths, high PLQYs, and tunable material systems which could 

potentially surpass the obstacles that have prevented the advance of OLEDs and QLEDs. However, 

PeLEDs still require significant progress in efficiency and operating stability. EQEs have exceeded 

20% in the green47, and red48; however, remain below 3% in blue.49 Although immense progress 

has been made in improving the EQEs, operating stability has also presented a major challenge.  

Green and red PeLEDs exhibit operating lifetimes tens of hours before degrading.48,50 However, 

there has been early success in improving stability by the means of surface passivation.51,52 

Specific organic ligands such as phosphine oxides have been shown to inhibit degradation and 

result in improved stability with high efficiency of green PeLEDs (up to 33 hrs with over 15% 

EQE)50.  In the case of blue, two-dimensional nanostructures have been utilized to obtain highly 

luminescent films with PLQYs over 80%, leading to bright PeLEDs with EQEs of 1.3%.53 Despite 

these shortcomings, perovskites, a relatively new class of materials in the field of light-emission 

have shown great promise and rapid improvement. 
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3.7.2 Colour Purity and Deep-blue Emission  

 

The two widely-used approaches to achieve deep-blue emission include: (1) a mixed-anion 

perovskite quantum dot of both Br/Cl; and (2) reduce the dimensionality of the 3D bulk perovskites 

to form well-defined and emitting quantum wells. Unfortunately, the former strategy suffers from 

halide segregation yielding spectral instability in colloidal solutions, films and in operando as 

active materials in LEDs.54,55 The latter is limited by a lack of precise control of the nanoscale 

morphology and the molecular ligands available to synthesize the desired perovskite quantum 

wells. In light of these limitations, there remain opportunities to develop materials for practical, 

stable and efficient light-emitting devices. Below I summarize a set of CsPbX3 nanocrystal-based 

materials and devices which employed the aforementioned strategies to attain blue emission 

(Table 3.1). Limited progress in exploring novel compositions and designing alloys of spectrally 

stable perovskite blue emitters has hindered their application in the next-generation display 

technologies.  

 

Table 3.1: Blue perovskite colloidal quantum dots and respective performance metrics  

System PLQY 

[%] 

FWHM 

[nm] 
EL/PL    

[nm] 

Peak 

EQE 

[%] 

Peak 

Luminance 

[cd m-2] 

Luminance 

@ Peak EQE   

[cd m-2] 

Spectral 

Stability 

Treated  

CsPbBr3
56  70 22 490 1.9 35 ~ 5 @ 1.9%  

CsPbBrxCl3-x  

QDs57 - 19 480 0.007 8.5 < 1  

CsPbBrxCl3-x  

QDs58 60 30 455 0.07 742 N.R  

CsPbBr3  

QDs59 35-50 40 475 0.0003 2 ~1 N.R 

Note:  refers to spectrally unstable, whereas N.R refers to not reported 
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3.8 Summary 

 

In 2016, at the beginning of my graduate studies, the set of deep-blue perovskite materials 

suffered from poor device performance as seen in low EQE values and spectral shifts (Table 3.1). 

I focused my studies on investigating and developing perovskite materials that would overcome 

the problem of spectral and operating instability. In Chapter 4 and 5, I focus on experimental 

strategies to tune optoelectronic properties via compositional engineering and nanostructure-based 

bandgap modulation towards the goal of deep-blue devices and stable electroluminescence. In 

Chapter 6, I carry out computational studies and incorporate machine learning methods to explore 

materials space rapidly and discover a new set of perovskites with targeted bandgaps. Post-

predictive analysis led to chemical interpretability, enabling me to propose candidate materials 

which were then experimentally realized and verified.  
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4 Enabling Deep-Blue Emission in Perovskite Quantum Dots  
 

Based on: Todorović, P.†, Ma, D.†, Chen, B., Quintero‐Bermudez, R., Saidaminov, M.I., Dong, 

Y., Lu, Z.H. and Sargent, E.H., 2019. Spectrally Tunable and Stable Electroluminescence Enabled 

by Rubidium Doping of CsPbBr3 Nanocrystals. Advanced Optical Materials, 7(24), p.1901440. 

 

Blue-emitting perovskite materials represent a vast and unexplored space. Their 

possibilities emerge from the wide available range of chemical compositions and nanoscale 

geometries.  

In this chapter, I explore perovskite quantum dot composition, as well as the nanoscale 

morphology, that can be achieved using chemical synthesis. I show that a mixed cation approach 

(A-site of the ABX3) in the typical orthorhombic perovskite systems led to spectral tunability with 

emission across the blue. I then examined the importance of ligand interactions and quantum dots 

during synthesis and achieve narrow-linewidth deep-blue emitting materials. I then lever this 

strategy to fabricate solid-state devices. The resulting LEDs exhibited the highest luminance values 

at the maximum external quantum efficiencies in both deep-blue and blue spectra compared to the 

best previously reported perovskite QD LEDs. 

 

 This work was conducted in collaboration with postdoctoral fellow Dr. Dongxin Ma, whom 

I share first co-authorship. Dr. Ma carried out fabrication and thermal evaporation of the light-

emitting devices in Professor Zheng-Hong Lu’s Lab. I led the materials synthesis, data collection, 

characterization, and data analysis and writing of the manuscript. Other co-authors contributed in 

experimental guidance, UPS, TEM and EDX measurements.   
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4.1 Introduction  

 

In the previous chapter I reviewed the progress made in perovskite QDs for use as efficient 

LEDs and presented an overview of the limitations in blue-emitting materials. Pure QDs of 

CsPbCl3 or CsPbBr3 are not able to achieve the desired blue wavelengths as recommended by the 

ITU-R Rec.2020 standards.18 Therefore, in order to achieve blue emission in these systems, a 

mixed-anion approach is employed which relies on mixtures of both Br and Cl in the archetypical 

APbX3 perovskite crystal. Despite reasonably high-quality solution PLQYs, films fabricated from 

these materials exhibit large spectral shifts under operating conditions preventing their function as 

stable and efficient light-emitting devices.56–58 This spectral shift is attributed to halide segregation 

that occurs under applied voltage bias. In addition to the composition modulation, size-tuning and 

varied nanoscale geometries have enabled tunable systems throughout the blue. 

I set out to reduce spectral instability in blue-emitting PQDs by utilizing a mixed-cation 

approach within a pure bromine perovskite crystal phase. Specifically, I investigated the 

incorporation of Rb+ into CsPbBr3 QDs during chemical synthesis to enlarge the bandgap while 

prohibiting the voltage-induced phase segregation. I sought to understand how, and to what degree, 

Rb+ incorporation led to tunable optoelectronic properties; and hence the resulting stability in 

solution and film under operating conditions. I studied how the reaction conditions and kinetics 

influenced the formation of various nanoscale geometries enabling a wide spectrum of blue-

emitting materials. 

 I then fabricated tunable light-emitting diodes which levered the photophysical properties 

of the novel RbxCs1-xPbBr3 nanocrystals. Devices exhibited stable and narrow electroluminescence 

emissions, while simultaneously demonstrating record high luminance values at peak operating 

external quantum efficiencies: 93 cd m-2 at 0.75% and 29 cd m-2 at 0.11% for sky-blue (490 nm) 

and deep-blue (464 nm) emission, respectively.  

 

4.2 Synthesis 

 

Blue perovskite QDs have been shown to achieve high solution PLQYs.37 However, 

translating this into film and ultimately practical solid-state devices remains a challenge. The 

mixed anion perovskite systems used today suffer from spectral instabilities in solution; and even 

more acutely in devices under voltage bias. The instability is attributed mainly to electric field 
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induced ion migration during device operation of the halide species.60 This broadens the emission 

profile, limiting application in high-efficiency LEDs. It is of interest to mitigate the spectral shift 

by developing new sets of candidate materials.  

I hypothesized that the higher concentration of anions within the ionic crystal (3 times more 

prevalent in the ABX3 structure) was one of the main factors contributing to spectral instability. I 

focused therefore on the CsPbBr3 set of perovskites as the control materials to implement the 

mixed cation strategy. I posited that Rb could sit at the A-site due to its identical (+1) oxidation 

state relative to Cs and similarity in terms of chemical and physical properties. I did note the 

difference in the ionic radii, a factor accounted via the tolerance factor (Equation 4.1) of the 

proposed RbxCs1-xPbBr3 system. Stable perovskites generally exhibit a factor greater than 0.85 and 

a pure CsPbBr3 crystal structure is estimated to be 0.92.  

𝑡 =
𝑟𝐴 + 𝑟𝑋

√2(𝑟𝐵 + 𝑟𝑥)
 (4.1) 

I used the Goldschmidt formula (Equation 4.1) to estimate an absolute maximum threshold 

value of roughly 70% for a stable mixed Rb-Cs blend, which agreed with literature reports (pure 

RbPbBr3 does not exist under ambient conditions).61 At higher Rb concentrations, a large structural 

distortion within the crystal occurs and prohibits the formation of the emissive orthorhombic 

phase, which is necessary for optoelectronic applications. Rb incorporation causes tilting of the 

PbX6 octahedra, while decreasing the overall orbital overlap (between the Pb 4f and X 3d) and 

hence enlarges the bandgap relative to a pure CsPbBr3 crystal.62–66 These initial calculations helped 

guide my colloidal synthesis.  

I proceed with the hot-injection synthesis method37 to achieve the doped RbxCs1-xPbBr3 QDs. In 

these syntheses, reactive metalloorganic precursors such as Cs-oleate are injected into a solution 

of dissolved PbX2 precursors capped with molecular ligands at elevated temperatures. In this case, 

I found that when I introduced a mixture of Rb-oleate and Cs-oleate (equal volumes) and adapted 

the procedure of Protescu et al. (Appendix A.1), I was able to obtain blue emissive nanocrystals.37 

I observed, following injection, a colour change indicative of PQD formation. UV lamp excitation 

of the reaction flask would confirm that this dual cation strategy exhibited a blue emission profile. 

However, under identical reaction conditions when I used Cs-oleate as the sole precursor, I 

witnessed a green emission profile under UV excitation. I followed typical protocols to purify the 
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solutions37,67,68, removing any unreacted by-products, and finally stabilize the colloidal solutions 

in nonpolar solvents such as hexane, octane or toluene to use for further studies and 

characterizations as shown in Figure 4.1.  

 

 

Figure 4.1: Solutions of synthesized and purified PQDs under UV excitation, dispersed in hexane 

(left: RbxCs1-xPbBr3 – blue, right: CsPbBr3 – green)  

 

4.3 Photophysical Studies and Light-Emitting Properties 

 

To verify the doping mechanism, I measured the photoluminescence and absorption spectra 

of the resulting of solutions. The photoluminescence profiles (Figure 4.2) exhibited a blue shift in 

the emission profile (to higher energies) as indicated by the peak shifting towards shorter 

wavelengths. These initial observations led me to investigate the reaction temperature and 

stabilizing ligand ratio (OA:OLA) as a path towards controlling the nanocrystal size. First, I found 

that at a fixed ratio of ligands and Rb:Cs, reduction in the synthesis reaction temperature led to the 

formation of smaller particles, and therefore an even larger shift in the PL peak to shorter 

wavelengths as seen in Figure 4.2. The symmetric PL profiles indicated that the PQDs retained 

their isotropic cubic structure even at reduced temperatures. However, when the ligand 

concentration of OA:OLA was changed from 1:1 to 2:1, deep-blue emitting colloidal nanoplates 

were synthesized as attributed by the asymmetric profile and a stronger quantum confinement 

effect.  
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Figure 4.2: Optoelectronic and structural characterization of RbxCs1-xPbBr3 PQDs. a) 

Photoluminescence and absorption spectra of synthesized solutions. A reference of CsPbBr3 QDs 

(green with an emission peak of 510 nm) and RbxCs1-xPbBr3 PQDs at various reaction 

temperatures showing spectral tunability. 

The PL spectra of the nanoplates peaks within the ranges of 450 – 470 nm with narrow 

emission linewidths of less than 20 nm, positioning them as promising candidates to meet the 

Rec.2020 specifications (Figure 4.3). In addition, I measured the PLQY of the resulting solutions, 

which varied from an absolute of 60% for the deep-blue to 90% for the sky-blue emitting species, 

comparable to that of the control CsPbBr3 QDs (Table 4.1).37,68 I then studied the PL lifetime 

decay and discovered that the radiative lifetimes of the RbxCs1-xPbBr3 was slightly shorter than 

that of pure CsPbBr3 PQDs when synthesized under identical reaction conditions (Appendix B1 – 

Figure 1 and B1 Table 1). In these experiments, I found that lower reaction temperatures led to 

decreased radiative lifetimes which may be attributed to a decreased particle size and increased 

surface trap formation which is prevalent in nanoplates and hence highlighted by slightly reduced 

PLQYs relative to the isotropic cubic species.60 Surface passivation treatments by introducing 

solvated solutions of PbBr2 post synthesis have been reported to reduce the trap formations and 
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improve PLQY.28,60 As a result, the mixed cation strategy tuned the optical properties, confirming 

the original hypothesis and enabling a range of blue-emitting materials.  

 

Figure 4.3: (a) Photoluminescence spectra of three Rb0.4Cs0.6PbBr3 solutions, demonstrating 

narrow emission linewidths (< 20 nm). (b) CIE plot of the three solutions, indicating extremely 

colour pure materials approaching the edge of the colour gamut and meeting the Rec.2020 

Standards for blue-emitting materials. Solutions and their respective (x,y) coordinates: =456 nm, 

(0.133, 0.061); =467 nm, (0.146, 0.157); =473 nm, (0.108, 0.128). 

Table 4.1: Photoluminescence Quantum Yield (PLQY) measurements of PQDs in hexane. 

 

 

 

 

 

 

 

 

 

 

Solution 
Temperature 

[C] 
OA:OLA 

PL
a) 

[nm] 

PLQY 

[%] 

CsPbBr3 150 1:1 510 93 

RbxCs1-xPbBr3 150 1:1 490  80 

RbxCs1-xPbBr3 135 1:1 480   70 

RbxCs1-xPbBr3 120 1:1 475 66 

RbxCs1-xPbBr3 120 2:1 465 60 
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4.4 Structural Characterization 

 

I fabricated PQD films by drop-casting and spin-coating. I then studied the relationship 

between the synthetic reaction conditions and Rb+ doping concentration via x-ray photoelectron 

spectroscopy. The resulting XPS traces are shown in Figure 4.4, which indicate that a Rb+ signal 

is observed only in the Rb-doped colloidal dispersions (Figure 4.4a). The Cs 3d peaks exhibited 

a shift to lower binding energies suggesting that Rb incorporates into the perovskite nanocrystal. 

Previous reports have reasoned that this occurs due to change in the electronic density.69 I then 

quantified the specific amounts of Cs:Rb within the various materials by integrating the area of 

the respective XPS traced yielding atomic Cs:Rb ratio of 2:1 for nanocubes and 1.5:1 for 

nanoplates. This suggested that the resulting compositions were of the form Rb0.33Cs0.66PbBr3 and 

Rb0.4Cs0.6PbBr3 respectively, matching that of the theoretically calculated values used to pursue 

the studies (Table 4.2). 

 

 

Figure 4.4: XPS Measurements (raw data and 10-point running average smoothing – thick line) 

of Rb (a), Cs (b), Pb (c) of drop-cast PQD films. Rb was present in the synthesized RbxCs1-xPbBr3 

NCs (for all temperatures and reaction conditions). 
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Table 4.2: Calculated atomic ratios by integrating the spectra over the specified energy range for 

each element of Rb-doped CsPbBr3 quantum dots thin-films. A 1:1 ratio is present for (Rb+Cs):Pb 

as expected, but in certain instances higher Br concentration may arise from mixed phases or 

bromine rich surfaces.  

 

In addition to XPS, I performed powdered X-ray diffraction measurements to assess the 

crystal structure and corroborate the previous findings. I found that in films of RbxCs1-xPbBr3 the 

XRD spectra shift to larger 2 angles Figure 4.5. In particular, the main peaks of the control 

CsPbBr3 QDs occur at values of 15.08  and 30.42 ; corresponding to the (100) and (200) crystal 

planes in a cubic crystal structure. However, upon the incorporation of Rb+, these values increase 

to 15.26  and 30.66  respectively. The increase is expected as Rb+ replaces Cs+ in the crystal 

structure which inherently increases the Pb-Br chemical bond and a tilt of the PbBr6 octahedra. 

This in turn shifts the XRD spectra towards larger 2 angles which is consistent with the identical 

case of Cl- doping in CsPbBr3 NCs (rCl
-
 > rBr

-) as reported.70,71 I then looked to examine the pure 

RbPbBr3 literature values (blue) and find that the observed peaks match the experimental RbxCs1-

xPbBr3 orthorhombic perovskite QDs, evidencing successful incorporation of Rb+ within the 

crystal as the peaks shift in the direction of the pure Rb-phase. Modulation of the temperature and 

ligand concentration led to the observation of additional peaks, which can be attributed to 

Rb4PbBr6 phase, potentially synthesized as an energetically favorable by-product (cyan bars in 

Figure 4.5). These measurements evidence of Rb+ presence in the films.  

PL
a) 

[nm] 
Temperature 

[C] 

Cs 

[At. %] 

Rb 

[At. %] 

Pb 

[At. %] 

Br 

[At. %] 

Ratio 

Rb:Cs 

490 135 14.2 2.9 15.5 67.3 0.2:0.8 

475 120 12.4 5.1 15.3 67.1 0.3:0.7 

465 120 10.0 6.6 15.4 68.0 0.4:0.6 
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Figure 4.5: X-ray diffraction measurements of cubic CsPbBr3 NCs (green curve) and nanoplates 

of RbxCs1−xPbBr3 nanoplates (blue curve). Deep-blue, green and cyan bars underneath the raw 

spectra correspond to peaks of RbPbBr3 (PDF 00-028-0924), CsPbBr3 (PDF 00-018-0364), and 

Rb4PbBr6 (PDF 00-025-0724) as obtained from the ICDD database. 

To determine the colloidal species synthesized, we carried out transmission electron 

microscopy (TEM). The images in Figure 4.6 indicate that nanocubes were observed at higher 

reaction temperatures and particularly at an equal OA:OLA ratio, whereas the nanoplates were the 

dominant species at lower reaction temperatures and at a 2:1 OA:OLA ratio. The lateral 

dimensions of these systems agree with previously reported PQDs of similar compositions.28,52,60 

Energy Dispersive X-ray measurements (Appendix B1 Figure 2) of these particles highlighted 

the presence of Rb only in samples which implemented the dual cation approach.  
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Figure 4.6: TEM images of synthesized RbxCs1-xPbBr3 nanocubes (left, green outline) and STEM 

dark-field image of RbxCs1-xPbBr3 nanoplates (right image, blue outline) with inset scale bars of 

20 nm. 

 

Motivated by the successful blue-emitting optoelectronic properties and the tunability of 

the system, we fabricated LEDs. The LED architecture can be summarized as a stacked set of 

layers consisting of:  indium tin oxide (ITO)/ PEDOT:PSS/ poly-TPD/ perovskite QDs/ TPBi (60 

nm) / LiF (1 nm)/ Al (150 nm) and displayed in Figure 4.7.  

 

Figure 4.7: (a) Device band diagram consisting of all the layers and their respective energy levels. 

(b) Device architecture.  
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4.5 Tunable and Spectrally Stable Light-Emitting Diodes  

 

As noted in the previous chapter, achieving stable blue electroluminescence has been rarely 

seen in mixed anion approaches. Reports have shown that Cl- is well known to introduce vacancies 

and cause trap formation within the perovskite QDs, resulting in considerable red-shifts of the EL 

peak.60,72,73 By contrast, the mixed cation approach retains a pure bromine crystal structure, and 

this improves PL and EL stability as demonstrated by the lack of a shift in the EL peak across the 

blue (from 464 nm to 490 nm, Figure 4.8) under increased voltage bias. At the time of publication, 

this was the first set of Rb-doped perovskite QD LEDs that demonstrated high colour-purity 

(Figure 4.9).52 

 

Figure 4.8: Electroluminescence spectra of RbxCs1-xPbBr3 light-emitting diodes (PeLEDs) 

exhibiting stabilized peaks at a) 490 nm (sky-blue), b) 475 nm (blue), and c) 464 nm (deep-blue) 

emitting devices for various operating voltages. Inset photographs are of EL devices under 

operating conditions for the various wavelengths. 



 

33 

 

 

 
Figure 4.9: EL Spectra CIE coordinates as calculated by the formulas, plotted with respect to the 

Rec.2020 colour standards.  

I found that, by optimizing the purification and fabrication procedure, I was able to obtain 

sky-blue and deep-blue RbxCs1−xPbBr3 PeLEDs which exhibited low turn-on voltages (< 4V) and 

a luminance greater than a pre-set practical minimum threshold luminance of 10 cd m-2, 

particularly 186 cd m-2 and 71 cd m-2, respectively (Figure 4.10a-b). The best device performance 

is summarized in Table 4.3 .  

 

Table 4.3: Best RbxCs1-xPbBr3 PeLED performance. 
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[%] 
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(@ 

EQEpeak) 
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Sky-blue 490 (22) 186 0.87 93 @ 0.75% 

Deep-blue 464 (18) 71 0.11 29 @ 0.11% 
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I also found that the RbxCs1−xPbBr3 PeLEDs showed a much higher luminance at their most 

efficient point of operation – the maximum external quantum efficiency (Figure 4.10c). In 

particular, the sky-blue and deep-blue devices displayed a peak luminance at the maximum EQE 

of 93 cd m-2 at 0.75% and 29 cd m-2 at 0.11%, respectively. These values were an order of 

magnitude higher relative to all previously reported PQD related candidates (Figure 4.10d).52,56,70 

However, it should be noted that the low absolute EQE values in the deep-blue devices were 

attributed to the decrease in the PLQY of the materials in film as an increase in the purification 

steps reduced surface passivation and introduced surface defects. These defects act as traps and 

offer non-radiative recombination pathways for the charge carriers to pursue. One common 

technique to address this has been QD surface passivation, but in combination with interfacial 

losses within the device structure may further improve device performance.27,52,71,74–76 
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Figure 4.10: PeLEDs fabricated from RbxCs1-xPbBr3 QDs.  (a) Current density (J) and luminance 

(L), (b) external quantum efficiency (all reported EQE values here are reported with at least 10 cd 

m-2) device performances of sky-blue (cyan line) and deep-blue (blue line) as a function of applied 

bias. (c) Devices which exhibited the largest luminance at their peak EQEs (Table 4.3) summarizes 

the performance values). (d) Comparison of reported perovskite quantum dot device luminance at 

maximum EQEs [at peak wavelength]. A horizontal line at 10 cd m-2 segments the data to indicate 

the importance of luminance at the reported maximum EQEs and highlights the improved device 

performance of RbxCs1-xPbBr3 devices.   
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4.6 Summary  

 

In this chapter, I designed a mixed-cation chemical synthesis strategy for RbxCs1-xPbBr3 

QDs. This led to tunable, narrow linewidths; and stable (thermally and under operating conditions) 

light-emitting materials. This approach addresses the poor spectral stability commonly observed 

in typical mixed-anion strategies since halide segregation. I characterized the colloidal solutions 

for their optical and structural properties, verifying the successful incorporation of Rb+: the main 

mechanism resulting in the improved optoelectronic properties. I then fabricated the first RbxCs1-

xPbBr3 QD LEDs to be reported and obtained stable spectral performance throughout the blue 

spectrum. The approach offers an avenue towards the design and development of practical and 

spectrally stable perovskite systems.  
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5 Improving Spectral Stability in Perovskite LEDs 
 

 

Based on: Ma, D.†, Todorović, P.†, Meshkat, S., Saidaminov, M. I., Wang, Y. K., Chen, B., ... & 

Sargent, E. H. (2020). Chloride Insertion–Immobilization Enables Bright, Narrowband, and Stable 

Blue-Emitting Perovskite Diodes. Journal of the American Chemical Society, 142(11), 5126-5134. 

 

Modulating the dimensionality in perovskite nanostructures offers an additional route for 

a tunable system.  In this chapter I examine the design of quasi-2D perovskites (consisting of 

quantum wells) as candidates for blue emission.  

Controlling the formation of particular quantum wells in these reduced dimensional 

systems has been challenging. I investigated post-synthesis molecular treatment of these 

nanostructures to modify the optoelectronic properties. I observed that organophosphoryl chlorides 

such as diphenylphopshinic chloride (DPPOCl) induced particular reaction kinetics, yielding films 

with narrow phase distributions. Precise and limited phase distributions improved the quantum 

yield, inhibited efficient charge funneling and narrowed the emission spectra – a combination 

required for practical light-emitting applications. I hypothesized the reaction mechanism and 

performed the appropriate characterizations to support the hypothesis responsible for the observed 

optoelectronic properties. Based on these results, devices were fabricated to highlight the benefit 

of the post-synthetic treatment towards producing simultaneous record high luminance and stable 

blue perovskite LEDs.  

 This work was conducted in collaboration with postdoctoral fellow Dr. Dongxin Ma, with 

whom I share first co-authorship. I proposed the reaction mechanisms, led the optical (TA) and 

structural characterization (XRD, XPS), data analysis, visualizations and materials design. Dr. 

Dongxin Ma fabricated all thin-films, devices and led the device performance measurements. 

Other co-authors contributed in experimental guidance, additional characterization methods, 

computational studies (DFT calcuations) and overall discussions of results.  
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5.1 Introduction  

 

In the previous chapter I discussed the first strategy utilized to obtain deep blue emission 

and address the spectral instability issue of typical materials. In this chapter I discuss an alternative 

method which relies on tailoring reduced dimensional perovskites geometry as opposed to tuning 

the elemental composition.45  

Reduced dimensional perovskites (RDPs) are classified as a quasi-2D structure – a hybrid 

of a two and three-dimensional (2D and 3D) system whereby an organic ligand generates well 

defined and spatially confined quantum wells with particular emission wavelengths.77–79 Reduced 

dimensional perovskites have garnered significant interest as promising materials for light-

emitting applications owing to their high PLQY and ease of manufacturing.30,45,80–82  

Today, the fabrication of RDPs leads to the formation of multiple quantum wells having 

varying degrees of confinement, and thus varying emission spectra.57,83–85 The distribution of 

quantum wells is influenced by the processing conditions and precursor concentrations. The 

distribution of thicknesses of quantum wells leads to a variation in the energy levels throughout 

the RDP solid. This leads to energy gradients among the phases: a cascade that has the potential 

to exhibit transfer of excitons among the variously-confined inclusions. 

When energy transfer is efficient (transfer occurs prior to radiative recombination), then 

emission can occur from the smallest-gap/longest-wavelength members of the population.83 

Controlling the quantum well thickness distribution has the potential to allow improved 

engineering of this  charge funneling, and to narrow the emission spectra and increate quantum 

yield, all relevant to light-emitting applications.   

I sought therefore to investigate how organochloride ligands introduced via post-synthesis 

transformed the reduced dimensional perovskite nanostructures.  I led the structural and optical 

characterization of the typical PEA2Cs1.6MA0.4Pb3Br10 perovskite material system and investigated 

the dynamic treatment procedure. I found that organophosphoryl chlorides such as 

diphenylphopshinic chloride (DPPOCl) induced reaction kinetics, yielding films with narrow 

phase distributions and emission profiles. I explored how the post-treatment modification resulted 

in well passivated films at various concentrations while simultaneously introducing chlorine into 

the perovskite crystal. This led to a tunable system which exhibited a blue-shift in emission. I 

specifically conducted X-ray diffraction (XRD) measurements to determine how the perovskite 
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crystal structure was modified via the chloride insertion-immobilization strategy. In addition, I 

studied the perovskite films using ultrafast transient absorption (TA) spectroscopy to investigate 

the photophysical properties of the films which revealed improved thermal and spectral stabilities. 

To support the proposed mechanism, I analyzed the elemental compositions via X-ray 

photoelectron spectroscopy (XPS) and reported the variation throughout the film by etching 

methods. The combination of these characterizations was necessary to develop insight of organic 

phosphide molecules and their role in stabilizing reduced-perovskite nanostructures, reducing the 

edge states and enabling blue emission. The experimental data confirmed the originally proposed 

mechanism and complements the computational results. 

Based on the observations, I sought to take advantage of improved photophysical and 

structural properties and apply them in light-emitting applications. DPPOCl treated LEDs, 

displayed reproducible record luminance greater than 5000 cd m-2 at a wavelength of 489 nm, and 

stable operating half-life of 51 minutes at a luminance of 1500 cd m-2. Further optimization resulted 

in tuning the perovskites towards deeper blues with external quantum efficiencies of 5.2% at 479 

nm and half-life of 90 minutes at a practical 100 cd m-2 with no shift in the electroluminescence 

peak in operation. These devices displayed record performance and stability at the time of the 

publication. 
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5.2 Post-Synthesis Ligand Treatment Overview 

 

Initially, this project was developed as a continuing study of the degradation and 

passivation schemes in reduced dimensional perovskites. It was well established that in these 

quasi-2D systems, degradation in performance and stability under photoexcitation and electrical 

injection was largely attributed to the presence of edge states.86,87 These edge states form by the 

reactivity between the intercalating amine group with moisture and oxygen resulting in non-

radiative pathways for the charge carriers to funnel to. This in turn is detrimental to obtaining 

efficient emission, and especially true for large bandgap materials (i.e. blue).88 Previous reports 

have indicated that successful edge passivation can be achieved by utilizing organophosphoryl 

molecules such as triphenylphosphine oxide (TPPO) during film fabrication to reduce these edge 

states and lead to enhanced optoelectronic properties.51 Previous reports have indicated that 

vacancies in the perovskite crystals induced halide migration under an applied electric field.89 

However, stabilized blue emission while reducing the moisture related degradation remained to be 

a challenge.  

I sought therefore to investigate how similar organic phosphide species can be introduced 

in a post-treatment step to yield the aforementioned properties and obtain the desired edge 

passivation in blue. I focused on the general PEA2Cs1.6MA0.4Pb3Br10 perovskite system which has 

shown promise as a highly efficient green emitting material.47 Rather than tuning the optical 

properties via compositional engineering through chlorine-doped precursors, I postulated a 

dynamic treatment which would be implemented as a secondary film application step as shown in 

Figure 5.1. I theorized the dynamic treatment to serve in dual purpose: (a) utilize the trace water 

(from the remaining solvent and precursor solution) to passivate the crystal edges and (b) blue-

shift the emission spectra. This required an intermediate thin-film step, whereby I posited that an 

organic chloride dissolved in antisolvent would help introduce Cl- in-situ in the perovskite grains, 

thereby leading to a blue-shift in emission and act as a passivating ligand (Figure 5.2). Discussions 

with colleagues and inspired by previous research studies we suggested the following set of 

molecules51: 

i. Diphenylphosphinic chloride (DPPOCl); 

ii. Phenylphosphonic dichloride (PPOCl2); 

iii. Benzenesulfonyl chloride (PSO2Cl); 

iv. Benzoyl chloride (PCOCl). 
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Figure 5.1: Postulated Phosphyryl Chloride Dynamic Treatment Process of Film-Fabrication 

(Second step, anti-solvent and ligand addition to form blue emitting perovskites) 

 
Figure 5.2: Imagined scenario of the perfect passivation scheme of the perovskite thin-films, 

inhibiting ion migration and resulting in stable, narrow blue emitters 

To assess candidates, Density Functional Theory (DFT) calculations were carried out by 

my computational co-authors to establish the reactivity of the proposed molecules with trace water. 

It was found that DPPOCl in particular had the potential to release Cl- when interacting with trace 

water forming an intermediate diphenylphosphinic acid (DPPOOH) and Cl- ion (Appendix B.2 – 

Table 1). DPPOOH would then form hydrogen bonds with the halogen ion (O-H…Cl and O-

H…Br), passivating surface halide vacancies and preventing halide segregation. As a result, it was 

appropriate to name this mechanism as a dynamic chloride insertion-immobilization strategy. In 

contrast, this was not observed for the remaining candidates PSO2Cl and PCOCl. Therefore, this 

narrowed the focus of the post-synthesis strategy with DPPOCl as the main molecule of study. The 

reaction mechanism can be summarized in Figure 5.3 below which highlights the difference in the 

typical chloride doping strategy and the proposed chloride insertion-immobilization mechanism 

through DPPOCl treatment. 

 



 

42 

 

 

 

 

Figure 5.3: Perovskite structures and mechanism. In conventional chloride-doped perovskites, 

halide vacancies enable severe Cl- migration; while in perovskites treated with DPPOCl, Cl- is 

inserted and immobilized in the perovskite flake.  

Motivated by the computational results, we fabricated films of PEA2Cs1.6MA0.4Pb3Br10 

(experimental details in Appendix A2) with DPPOCl treatment as described (with varying 

concentrations of 10, 20 and 30 mg/mL) and in the conventional chloride precursor method. The 

initial set of measurements of nuclear magnetic resonance spectroscopy confirmed the reactivity 

between trace water and DPPOCl as hinted by the resulting peaks observed. To date, the most 

widely implemented approach for blue emission in quasi-2D perovskites was introducing a 

mixture of PbBr2 and PbCl2 in the starting precursor solutions.57,90,91 I refer to this as conventional 

chloride doping. I reasoned that a fair comparison would entail the conventional chloride-doped 

perovskite system as the standard control to evaluate the DPPOCl strategy. Thus, further 

characterizations were required to develop greater insight of the treatment procedure. 
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5.3 Optical Properties 

 

The optical properties of the aforementioned thin-films were the first set of 

characterization. The absorption (Figure 5.4a) and photoluminescence (Figure 5.4b) peaks 

indicated that films treated with DPPOCl (solid line) led to a blue-shift towards shorter 

wavelengths, PLQYs exceeding 50% and longer radiative lifetimes with increasing concentration 

relative to the base PEA2Cs1.6MA0.4Pb3Br10. The blue-shift was also present in the control group 

(x = 1, 2, 3, dashed line) but these films exhibited lower PLQYs and shorter lifetimes (Figure 

5.4c). PL stability was monitored in ambient conditions and it was found that under continuous 

excitation (Figure 5.4d), DPPOCl treated perovskites demonstrated an improved ability to 

maintain their initial intensity as time progressed. As with previous studies, this suggested that the 

molecular ligands indeed helped provide an effect method for surface passivation as the observed 

rate of PL intensity decay decreased with increasing DPPOCl treatment (maximal stability 

observed in the case 30 mg/mL DPPOCl, Figure 5.4d solid blue line).92,93  
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Figure 5.4: Optical properties. a, Absorption spectra. b, PL spectra. c, PL radiative lifetime. d, PL 

stability of control PEA2Cs1.6MA0.4Pb3Br10-xClx (x = 1, 2, or 3) (dashed line) and perovskites treated 

with 10, 20, or 30 mg/mL DPPOCl (solid line). 

 

The photostability of the films was measured at an average optical excitation density of 

180 mW/cm2 (Appendix A.2 for further details). These results suggest that, in terms of power 

density, DPPOCl treated films have the potential to be more robust under applied voltage bias. 

Total energy dissipated within the films will also be a function of the thickness of the active layer, 

and the molecular passivation obtained through DPPOCl is expected to enhance this further 

relative to prior Cl-doped perovskites.  

As noted previously, reduced dimensional perovskite thin films typically exhibit poor 

PLQYs unless coupled with an effective method to passivate the surface defects. The dynamic 

perovskite treatment protocol addressed this limitation, showing that DPPOCl passivated the 

surface defects, blue-shifted the PL peaks, improved PLQY and PL stability under constant 

fluence.  Inspired by these photophysical observations, I then sought to investigate the films from 

a structural level. 
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5.4 Nanostructure Characterization  

 

X-ray diffraction (XRD) was used to characterize the nanostructures formed in the 

perovskite crystal. The base undoped PEA2Cs1.6MA0.4Pb3Br10 system displayed the bulk 

perovskite signals occurring at 2 angles of 15.7 and 30.9, corresponding to the set of 110 and 

220 crystal planes respectively. Figure 5.5 highlights that both control and DPPOCl treated 

samples the exhibit a shift in bulk perovskite peaks towards larger values.  

 

Figure 5.5: Structural XRD spectra a, control PEA2Cs1.6MA0.4Pb3Br10-xClx (x = 1, 2, or 3) and b, 

perovskites treated with 10, 20, or 30 mg/mL DPPOCl. 

 This is expected and consistent with previous reports.94 The angular shifts increase with 

increased concentrations of chloride treatment, indicating greater doping and successful 

incorporation into the crystal lattice. This verifies the observations of the blue-shifted PL peaks as 

a consequence of enlargement of the bandgap. The XRD peaks reveal a similar width, suggesting 

that the crystal sizes were of the same order despite the varying concentrations. Using the Scherrer 

equation (Equation 5.1), I calculated the crystallite size of the samples which were roughly 8-10 

nm: 

𝜏 =
𝐾𝜆

𝛽𝑐𝑜𝑠𝜃
 (5.1) 

where τ is the mean size of the crystalline domains, which may be smaller or equal to the grain 

size; K is a dimensionless shape factor, with a value close to unity; λ is the wavelength of the x-

ray source; β is the line broadening at half the maximum intensity, after subtracting the 

instrumental line broadening, in radians; and θ is the Bragg angle. 
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 Similar peak shifts were observed in perovskites treated with PPOCl2, but not with PSO2Cl 

or PCOCl (Appendix B.2 - Figure 1). Therefore, it further supported our hypothesis that DPPOCl 

was the most optimal choice of passivating ligand to develop the insertion-immobilization chloride 

mechanism. To gain further insight of the perovskite nanostructures, I proceeded with ultrafast 

transient absorption (TA) measurements.  

 

Figure 5.6: Detailed XRD Spectra of DPPOCl to elucidate the increase of the angle towards larger 

values with increasing concentration shifts.   

5.5 Film Kinetics and Film Formation  

 

Transient absorption measurements allowed me to determine how the quasi-2D film was 

altered after the ligand passivation technique and in particular examine the size distribution of the 

perovskite grains. TA spectra of the initial base perovskite PEA2Cs1.6MA0.4Pb3Br10, five 

photobleach valleys at 404, 433, 464, and 509 nm were observed (Figure 5.7) and are plotted 

against the bulk 3D perovskite of composition Cs0.8MA0.2PbBr3 which displays one single bulk 

absorption. The valleys in PEA2Cs1.6MA0.4Pb3Br10 correspond to the n = 1, 3, 5, and 5+ phases in 

the perovskite structure. The formation of the varied phases in RDPs is seen in 

PEA2Cs1.6MA0.4Pb3Br10. As the thickness n of the perovskite layers increases, the energy 

difference decreases and the photobleach valleys overlap one another. The largest energy 
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differences exist in the case of low n phases (namely n=1, 3, 5) and at shorter wavelengths. Narrow 

emission linewidths can be realized by funneling charge carriers via efficient exciton transfer from 

the large to small bandgap phases; or via the precise tuning of the energy landscape.   

 

Figure 5.7: TA spectra of 3D perovskite Cs0.8MA0.2PbBr3 (solid line) and quasi-2D perovskites 

PEA2Cs1.6MA0.4Pb3Br10 (dashed line) reported at 10 ps delay following photoexcitation pulse. 

 

In the case of control PEA2Cs1.6MA0.4Pb3Br10-xClx (x = 1, 2, or 3), the photobleach valleys 

blue-shifted with an increase in the chloride:bromide ratio (Figure 5.8a) agreeing with the 

structural XRD measurements. However, for perovskites treated through dynamic DPPOCl 

addition, the TA spectra showed a significant difference in the suppression of lower n-phases 

(Figure 5.8b) as seen by the absolute removal in their respective intensities (reduction in n = 1, 3, 

5). These films exhibited a dominant proportion of n = 5+ phases, which improved the 

recombination rate through effective passivation and a reduction in the phase dispersity relative to 

the lower phases. Previous reports have observed similar phenomena – supporting these findings.26  
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Figure 5.8: TA spectra of control PEA2Cs1.6MA0.4Pb3Br10-xClx (x = 1, 2, or 3) and perovskites 

treated with 10, 20, or 30 mg/mL DPPOCl (measured at 10 ps). 

 

Perovskites treated with PPOCl2 showed similar TA spectra, but PSO2Cl or PCOCl 

portrayed much different results at a concentration of 10 mg/mL (Figure 5.9, Appendix B.2 - 

Figure 2). The results highlight that DPPOCl was the optimal choice from the family of 

phosphoryl chlorides which enables precise control of the crystallization process, decreasing the 

coexistence multiple reduced-dimensional perovskite domains, and thus enabling narrowed 

emission linewidths of 20 nm. Lastly, I show that decay dependent TA studies in (Appendix B.2 

- Figure 3) highlight that both the control and DPPOCl treated perovskites the amplitude of 

photobleach valleys slowly increase with delay time, yet the peak positions remain constant 

indicating film stability.  
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Figure 5.9: TA spectra of perovskites PEA2Cs1.6MA0.4Pb3Br10 treated with 10 mg/mL DPPOCl, 

PSO2Cl, or PCOCl (measured at 10 ps). 

 

5.6 Chemical Composition 

 

I then proceeded to investigate the chemical composition through X-ray photoelectron 

spectroscopy (XPS). I confirmed the presence of Cl in both the perovskite treated films with 

DPPOCl and in the control PEA2Cs1.6MA0.4Pb3Br10-xClx (x = 1, 2 or 3) on the surface, confirming 

the Cl-doping and supporting the blue-shifted optical properties. Since XPS is a surface sensitive 

technique, I reasoned that measurements throughout the depth of the film would improve insight 

of the treatment process and understand the chemical composition as a function of film thickness. 

Cross-sectional SEM results indicated that the thickness of the perovskite film in the fabricated 

devices was roughly 60 nm (Appendix B.2 - Figure 4).  

 

I utilized Ar+ ion-etching to obtain 3 separate depth levels: the surface, ~15 nm, and ~30 nm 

depth. After the etching was completed, XPS measurements were performed at the two depth 

levels and the chemical compositions were obtained by integration of the resulting spectra using 

the instrument software. The two films presented different elemental distributions throughout the 

depth of the film. As the etch depth increased, the Cl ratio increased for all perovskite films treated 

with DPPOCl, whereas the opposite trend was observed for the control films (Table 5.1). These 

results showed an improved chlorine doping mechanism throughout the overall film, attributing to 

the overall stability and optoelectronic performance enhancement. In addition, XPS measurements 
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revealed that P was more present on the surface of the perovskites treated by DPPOCl (and non-

existent in the control), implying a passivated film surface. However, phosphorus is an extremely 

light element and therefore it was problematic to quantify the exact ratio of P in the perovskites 

treated with DPPOCl, especially post-etching in ultra-high vacuum conditions. For that reason, it 

has been omitted from the table below.  

 

Table 5.1: XPS Measurements and the resulting compositions of Cl/Br as determined by 

integrating the spectra  

 Surface In the film (30 nm 

deep) 

Perovskite Formula Ratio of 

Cl (%) 

Ratio of 

Br (%) 

Ratio of 

Cl (%) 

Ratio of 

Br (%) 

PEA2Cs1.6MA0.4PbBr9Cl 

 (x = 1) 

12.6 87.4 11.4 88.6 

PEA2Cs1.6MA0.4PbBr8Cl2  

(x = 2) 

22.7 77.3 18.7 81.3 

PEA2Cs1.6MA0.4PbBr7Cl3  

(x = 3) 

30.3 69.7 26.8 73.2 

PEA2Cs1.6MA0.4PbBr10  

10 mg/mL DPPOCl 

9.7 90.3 10.3 89.7 

PEA2Cs1.6MA0.4PbBr10  

20 mg/mL DPPOCl 

10.9 89.1 17.8 82.2 

PEA2Cs1.6MA0.4PbBr10  

30 mg/mL DPPOCl 

15.3 84.7 23.1 76.9 

 

 

5.7 Device Performance 

I then sought to take advantage of the improved photostability while simultaneously 

enlarging the bandgap and realizing blue reduced dimensional perovskites through the insertion-

immobilization strategy. LEDs were fabricated based on the architecture described below in 

Figure 5.10. The LED follows the following stack: indium tin oxide (ITO)/ PEDOT: PSS: PFI 
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(~200 nm)/ Perovskite (~60 nm)/ TPBi (30 nm)/ LiF (1 nm)/ Al. The choice of materials was 

chosen based on previous literature and their particular energy levels described below51,77:  

1. PEDOT: PSS: PFI served as the exciton-buffering and hole-injection layer; 

2. TPBi was the electron-transport layer; 

3. Lithium fluoride (LiF) as the electron-injection layer; 

4. Al as the cathode.  

The energy band diagram of the resulting perovskites is also displayed in the right panel, 

determined by UPS measurements, which enabled the efficient and charge-balanced injection.  

 

Figure 5.10: Perovskite LED architecture and energy band diagram based on literature and UPS 

measurements. 

Device performance is summarized in Figure 5.11 and Table 5.2. Perovskite LEDs which 

leverage the DPPOCl treatment exhibited higher current densities and EL performance relative to 

control PEA2Cs1.6MA0.4Pb3Br10-xClx (x = 1, 2, or 3). This I attribute to enhanced conductivity 

through the improved phase purity. EQE and luminance increase with increasing DPPOCl 

concentration which directly correlates with the PLQYs of the corresponding films. Perovskites 

treated with 10 mg/ mL DPPOCl showed a highest EQE of 7.4% and luminance of 32,320 cd/m2 

at 510 nm. Perovskites treated with 20 mg/mL DPPOCl exhibited a peak EQE of 3.5% and 

luminance of 15,290 cd/m2 at 499 nm. Perovskites treated with 30 mg/mL DPPOCl operated with 

a maximum EQE of 1.3% and luminance of 5,141 cd/m2 at 489 nm achieving the highest 

luminance among reported perovskite LEDs in the blue region (Table 5.2).95 
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I also observed that LEDs which applied DPPOCl treatment enabled narrow FWHM below 

20 nm through the reduction in the phase dispersity, providing a tighter size distribution and 

enhanced the colour stability by preventing ion migration under operation. The conventional 

chloride doped perovskite PEA2Cs1.6MA0.4Pb3Br10-xClx (x = 1, 2, or 3) displayed a clear shift in the 

EL spectra and change in the CIE coordinates. Specifically, a WSHM of 1.0, 3.4, and 5.9 nm, 

respectively was observed for the three concentrations in increasing order. On the other hand, 

perovskites treated with DPPOCl showed stable EL spectra with no observable wavelength shift 

(Figure 5.12). 

The best-performing sky-blue LEDs treated with 30 mg/mL DPPOCl achieved an EQE of 

5.2%, a narrow linewidth (FWHM of 18 nm) and stable (WSHM of zero) emission at 479 nm 

(Figure 5.12). The two measured half-lives were 5 min at an initial luminance of 468 cd/m2 and 

90 min at 100 cd/m2, exceeding prior blue perovskite LEDs (Table 5.2).95 
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Figure 5.11: LED performance a. Current density versus voltage curves. c, Luminance versus 

voltage curves of LEDs based on control PEA2Cs1.6MA0.4Pb3Br10-xClx (x = 1, 2, or 3, dashed lines) 

and perovskites treated with DPPOCl (10, 20, or 30 mg/mL, solid lines). b, Operating lifetime of 

the sky-blue LEDs under different constant driving currents, and the inset shows a photograph of 

the operating device at 468 cd/m2. d, EL spectra at half of the maximum luminance (234 cd/m2), 

maximum luminance (468 cd/m2) and during the lifetime measurement at t = 5 min when the 

luminance dropped to the half. 
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Table 5.2: Performance of reported blue-emitting perovskite LEDs. 

PerovskiteReference EQE

max 

 (%) 

Lmax  

(cd/m2) 

λEL 

 (nm) 

FWHM /  

WSHM 

(nm) 

T50 

PEA2PbBr4
96 0.04 N. A. 410 14 / - N.A. 

PEA2(Rb0.4Cs0.6)2Pb3Br10
97 1.5 854 490 (at L50) 

490 (at Lmax) 

30 / 0 2 min at 126 

cd/m2 

(IPA)(PEA)2(Cs/MA)1.5Pb2.5Br9.5
53 1.5 2,480 490 (at L50) 

490 (at Lmax) 

28 / 0 0.5 min at 210 

cd/m2 

(PBA)1.1FA0.3Cs0.7PbBr4.1
98 9.5 700 483 (at L50) 

483 (at Lmax) 

26 / 0 4 min at 100 

cd/m2 

(BA/Cs)PbBr1.26Cl1.74
55 2.4 962 465 (at L50) 

472 (at Lmax) 

23 / 7 1 min at 500 

cd/m2 

(BA/Cs)PbBr2.52Cl0.48
55 6.2 3,340 487 (at L50) 

487 (at Lmax) 

25 / 0 10 min at 800 

cd/m2 

(PEA/Cs)PbBr2.1Cl0.9
99 5.7 3,780 480 (at L50) 

488 (at Lmax) 

21 / 8 10 min at 

1,500 cd/m2 

 

PEA2Cs1.6MA0.4Pb3Br10 treated 

with DPPOCl 

1.3 5,141 489 (at L50) 

489 (at Lmax) 

18 / 0 51 min at 

1,500 cd/m2 

5.2 468 479 (at L50) 

479 (at Lmax) 

18 / 0 90 min at 100 

cd/m2 

 

* EQEmax, maximum external quantum efficiency; Lmax, maximum luminance; L50, half of the 

maximum luminance; λEL, EL wavelength; FWHM, Full-Width at Half Maximum; WSHM, 

Wavelength Shift between Half and Maximum luminance; T50, half-life 
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Figure 5.12: Colour purity and spectral stability. a-c, EL spectra. d-f, CIE values of the green-

blue, ice-blue, and sky-blue LEDs based on control PEA2Cs1.6MA0.4Pb3Br10-xClx (x = 1, 2, or 3, 

dashed lines and hollow stars) and perovskites treated with DPPOCl (10, 20 and 30 mg/mL, solid 

lines and stars). 
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5.8 Summary 

 

In this chapter, I reported the design of a dynamic chlorine doping and molecular 

passivation treatment system based on introducing DPPOCl post-film fabrication that resulted in 

precise control of the quantum well size distribution in a quasi-2D perovskite system. The chloride 

insertion-immobilization mechanism passivated the edges of the resulting films and introduced 

chlorine into the crystal domains thereby shifting the emission towards the blue. This strategy led 

to the narrow emission profiles and improved spectral stability in devices. Relative to prior 

chloride-based precursor doping strategies, the treatment method resulted in a non-existent WSHM 

shift of the emission spectra under operation – leading to improved life-time stabilities. The 

proposed mechanism was supported by computational density-functional-theory calculations, and 

experimental evidence verified the reaction pathways which led to the observed improvements.  

This dynamic treatment approach enabled bright and colour-pure blue-emitting 

perovskites. It addresses the problem of spectral stability caused by ion migration in prior reports. 

In the next chapter, I focus on combining computational efforts to help guide and efficiently 

discover next-generation semiconductors for light-emitting applications.  
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6 Semiconductor Discovery Guided via Machine Learning 
 

Based on: Choubisa, H.†, Todorović, P.†, Pina, J.M., Parmar, D.H., Li, Z., Voznyy, O., Tamblyn, 

I., Sargent, E.H., 2021. Interpretable discovery of new semiconductors with machine learning. 

Submitted to JACS.  

 

Ab initio methods such as density functional theory (DFT) are used to explore materials 

computationally. DFT is used by the research community to predict and estimate electronic 

properties of materials and to examine which crystal structures are most favoured energetically.   

However, accurate calculations are computationally expensive even for modern day 

supercomputer clusters. In this Chapter, I advanced a graph-based neural network architecture by 

designing specific input data structures to predict the optoelectronic bandgaps of inorganic 

materials with high accuracies. I utilized a DFT dataset containing hybrid-functional calculations 

of the bandgap – an approach known to improve accuracy, though to come at the cost of being 

computationally demanding – to train the algorithm. Inspired by biology, an evolutionary 

algorithm is implemented which levers the machine-learned models to explore materials space 

efficiently and rapidly. Chemical insights are derived from the proposed candidates and design 

rules are established which help guide experimental research efforts. Based on the interpretable 

rules which I discovered, I proposed a set of candidate UV semiconducting materials. These were 

realized experimentally and studied for their photophysical properties. These findings illustrate the 

unification of computational machine learning and experiment for AI-guided materials discovery. 

The overall system was named DARWIN: Deep Adaptive Regressive Weighted Intelligent 

Network. 

 This work was conducted in collaboration my fellow doctoral candidate Hitarth Choubisa 

whom I share first co-authorship. I designed, trained and optimized the deep learning models used 

to predict the optoelectronic properties, implemented the evolutionary algorithm, led the data 

visualization and statistical analysis of the computational and experimental results, and guided the 

experimentalists in synthesis procedures. Hitarth provided all DFT calculations and verifications, 

and he designed the DNNs responsible for classification and regression tasks on the structural and 

stability properties. Other co-authors carried out experimental characterization of the predicted 

materials including XRD, PL studies, and overall discussions of results.  
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6.1 Introduction 

 

In the previous chapter I discuss the experimental strategies to design nanoscale perovskite 

materials for light-emitting applications. In this chapter, I focus on complementing and guiding 

the experimental discovery of materials via computational methods. A simplified diagram of the 

blended experimental-computational approach is illustrated in Error! Reference source not found..  

 

 

Figure 6.1: Machine-learning algorithm and the schematic of the experimental-computational 

bridge of predicted materials validation.  

 

6.2 Deep Learning – Graph Neural Networks (GNNs) 

 

The first constituent component of DARWIN is the DNNs used to predict the properties of 

interest. Graph Neural Networks (GNNs) are a type of DNN which use graphs as input. They have 

shown promise in ML predictions of materials due to their effectiveness in capturing non-arbitrary 

irregular structures such as that of molecules and crystals.100,101 The crystal structures from the 

DFT dataset are represented as 2D graphs with structural information following the formulation 

of previous reports.100–102 The crystals structures are formatted as undirected graphs G:= {V, E} 

which represent nodes (n) as atoms and edges connecting the corresponding atoms as bonds, 

respectively (Figure 6.2). Atomic features are denoted as ui and represent physical and chemical 

properties native to the atom at node i (refer to Appendix for an exhaustive list). Similarly, an edge 

feature vector labelled ei,j  incorporates the reciprocal distance 𝑑𝑒
−1 between the connecting nearest 

neighbouring atoms i and j (Figure 6.2). The concept of convolution in this network helps encode 

local information from the neighbouring atomic elements, selected by implementing a cut-off 

radius of 8Å – ensuring that only the local environment is considered. I posited that the specific 
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reciprocal distance edge attribute would capture the strength of the relative atomic properties for 

the varied elements in the crystal system and scale them as accordingly. This concept arose from 

the physical intuition that many forces scale with the inverse of the distance (i.e., gravitational, 

electrostatic attraction, etc). This led to the model efficiently learning on a smaller but accurate 

dataset. The details of the graph encoding procedure and standard convolution implementation of 

models for supervised regression and classification tasks I include in Appendix A3.  

 

 

Figure 6.2: Mapping crystals to graph representations through encoding atomic information. Then 

the Graph Neural Networks are trained to predict the desired property – bandgaps, energies, and 

direct/indirect nature. 

6.2.1 Predictive Graph Convolutional Neural Network Models – Bandgap 

 

Many studies have implemented various convolutional operators with success100,101,103,104, 

but here I use a complementary set of convolutional graph neural networks as the basis for the 

predictive ML models. I design a specific convolution operation for the bandgap regressor shown 

below. Each crystal graph is fed into the network as an input; wherein the convolutional layer is 

defined by the following order of operations: the maximum vector after concatenation (⊕) of the 

current atoms feature vector (𝑢𝑖
𝑡), the product of each neighbouring (𝒩(𝑖)) atomic feature vectors 

(𝑢𝑗
𝑡) with the corresponding edge features (𝑒𝑖𝑗) at each iteration 𝑡. The 𝛾𝑡 represents the update 

function (typically defined by a multilayer perceptron (MLP) consisting of a non-linear activation 

function 𝑔) and weight tensors 𝑊𝑠
𝑡 and 𝑏𝑡 which are learnt during the training steps for each 

convolutional layer.   

𝑢𝑖
𝑡+1 = 𝛾𝑡 [ max

𝑗∈𝒩(𝑖)
(𝑢𝑖

𝑡 ⊕ (𝑢𝑗
𝑡 ∙ 𝑒𝑖𝑗))] ,

∀ 𝑖, 𝑗 ∈ 𝐺

∀ 𝑡 ∈ {1, … , 𝑇}
 (6.1) 
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𝑢𝑖
𝑡+1 = 𝑔 [ max

𝑗∈𝒩(𝑖)
(𝑢𝑖

𝑡 ⊕ (𝑢𝑗
𝑡 ∙ 𝑒𝑖𝑗)) 𝑊𝑠

𝑡 + 𝑏𝑡] ,
∀ 𝑖, 𝑗 ∈ 𝐺

∀ 𝑡 ∈ {1, … , 𝑇}
(6.2) 

An output value is obtained by pooling all of the hidden nodal features using the 

mean pooling function which results in the prediction of a bandgap value �̂�𝑏𝑎𝑛𝑑𝑔𝑎𝑝. 

�̂�𝑏𝑎𝑛𝑑𝑔𝑎𝑝 =
1

𝑛
∑ 𝑢𝑖

𝑇

𝑛

𝑖=1

, ∀ 𝑢 ∈ 𝐺 (6.3) 

To measure the accuracy of the ML models, I use the mean squared error as a cost/loss 

function. I seek to minimize the MSE during training which evaluates how well our predicted 

bandgap is with respect to the target values. I achieved this minimization by finding the optimal 

values for the weight and bias matrices in the corresponding convolutional layers.  

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2, ∀ 𝑖 ∈ 𝐺

𝑛

𝑖=1

(6.4) 

GCNN generates a global representation of the crystal structure from the chemical features 

representative of each element at a given node and edge feature that scales as the reciprocal 

distance between the atoms to reproduce the predictions of accurate ab initio calculations (Figure 

6.2, see Appendix A3 for details). I train the bandgap regressor (Figure 6.3) on a newly generated 

dataset of 1,800 samples calculated using the computationally expensive HSE functional, which is 

known to correlate well with experimental values.  
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Figure 6.3: ML Bandgap Predictions vs. True (DFT) Predicted bandgap values on the validation 

data for the best performing and hyperparameter tuned bandgap regressor as previously mentioned. 

The resulting model predicts the true HSE bandgap value with a coefficient of determination of 

0.829 and mean-absolute-error of 0.477 eV. This error is lower by 20% relative to current DFT 

errors for the bandgap calculations (MAE of DFT105 ~ 0.6 eV).  

I observed that a total of 4 convolutional layers and 2 fully connected dense layers were 

the most optimal choice of the network that led to accurate predictions of the bandgaps. The list 

of atomic features (Appendix B3 – Table 1 and Table 2) and the best performing set are reported 

in the Appendix B3. All features were normalized via standard ML procedures prior to the crystal 

graph generation to ensure comparable scalar magnitudes. Graphs were generated using the 

aforementioned process, enabling efficient and rapid batch training.  

In training the model, hyperparameters are an additional set of variables which are model 

specific and can be modified to improve accuracy and accelerate training. Examples include the 

optimization methods, activation functions, learning rate and regularization parameter of the neural 

network. The optimal set is determined by training the model several times while varying the 

values and evaluating the final performance on a validation dataset. The set of hyperparameters 

that perform best are then selected and implemented on the “out-of-sample” test data to generate 
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an unbiased performance of the model. Here, the main choice of hyperparameters available to be 

optimized in the graph model include: the size of each convolutional layer, choice of activation 

function, pooling layer, learning rate and weight decay. I found that the most optimal 

hyperparameters were the following: the Adam optimizer, a rectifying linear unit activation 

function (ReLU), learning rate of 0.01, weight-decay of 0.0005, 4 convolutional layers (consisting 

of 64, 64, 32, 16 output channels).  

Since MAEDFT ~0.6 eV105 relative to experimental bandgaps, and error in the GNN is not 

systematic, it is expected that the ML predictions will be closer to experimental results as well. 

The previously optimized set of hyperparameters resulted in a mean-absolute-error of 0.48 eV on 

validation data after 3000 epochs of training on a set of roughly 1,800 crystals. I report the 

prediction comparison of the optimized ML model, DFT and experimental values of the bandgaps 

in Figure 6.4. Despite training on DFT values, ML predicted bandgaps show good agreement with 

measured values on a test set of experimentally confirmed compounds. The trained and optimized 

GCNN models predict HSE06 bandgaps with mean absolute errors (MAE) of 0.53 eV on test data. 

This implies that the model is quite accurate in predicting the optoelectronic properties of materials 

outside the training space, highlighting the ability to learn and generalize from the training set. 

Thus, the best out-of-sample model was chosen and used as one of the surrogate models for the 

implementation in the evolutionary algorithm. 
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Figure 6.4: Performance of the ML model and HSE06 exchange-correlation functional calculated 

values in predicting experimental bandgaps (inset of training/validation loss curves). The legend 

includes the coefficient of determination and linear regression parameters as obtained by fitting a 

linear regression model between the true experimental value and the two various predictions 

methods (DFT vs. ML). 
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6.3 Evolutionary Algorithm 

 

We then sought to leverage and utilize the optimized GCNNs as surrogate models and implement 

them in a learning-based (i.e. intelligent)106,107 agent (evolutionary algorithm) to search through 

materials space. The evolutionary search process is divided into two components: (1) random 

generation of the initial candidates from all possible crystal structures, using compositions that 

satisfy the charge balance, and (2) an iterative update-evaluation step (Appendix A3 for details) 

in which candidates are evaluated for fitness and ranked relative to one another based on chosen 

fitness score. The most intuitive and typical fitness function is the sum of the mean squared errors 

of the predicted bandgap, energy above hull, and direct-indirect nature relative to their desired 

values and then ranked accordingly. All candidate materials are ranked in descending order of 

fitness such that those having the highest error are ranked lowest. After the ranking and sorting, 

the bottom half is discarded, and the top half is replicated but with each corresponding structure 

receiving a mutation, thereby generating a new group of candidates. In our case, we substitute a 

random element of equivalent oxidation state from a set dictionary of elements available to 

maintain the charge neutrality of the structure. This procedure results in a new generation of 

potential solutions of the same initial size and referred to as mutation and the overall process is 

described in Appendix A3. In addition to mutation, crossover is another genetic operator which 

modifies the set of potential solutions at each iteration. However, crossover would take the top-

ranked candidates and randomly select the atoms from this top selection and form arbitrary 

combinations of compositions which may or may not fundamentally coexist in the physical realm. 

In addition, crossover methods potentially proceed towards local-optima and a suboptimal solution 

as a result of the similarity among the top-ranked individuals – motivating the single mutation 

strategy and omitting crossover.108 I found that mutations alone were enough to direct the search 

towards the optimal compositions of the large chemical space, confirmed by the decreasing loss 

as a function of increased iterations, or increasing set of species generations (Figure 6.5).  
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Figure 6.5: Average loss as a function of generations. Using random mutations alone, we achieve 

quick loss convergences for finding optimal bandgap and stable materials for a target bandgap. 

Result shown for finding stable, direct bandgap material with bandgap of 3.1 eV. 

 

Evolutionary search was initialized with a set of randomly generated prototype structures 

spanning 220 space groups and 7 crystal systems synonymous with the original dataset. The search 

algorithm relies on the ML surrogate models to predict the properties of interest and evaluate the 

set of candidates for their fit as described previously. Although evolutionary search combined with 

a surrogate model can lead to promising compositions, it does not on its own provide intuitive 

understanding for the discovery of such materials. The last component of DARWIN enables 

interpretation101,109. The complete process is illustrated in Figure 6.5, describing each component.  
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Figure 6.6: Evolutionary Search via surrogate models - DARWIN. Input. To enable search of 

compounds with non-rare elements, we limited DARWIN search by excluding Lanthanides, 

Actinides and rare transition elements. Crystals were generated using substitutions in prototype 

structures and spanned over 7 crystal systems and 220 space groups; Intelligent Search. DARWIN 

uses trained Graph Networks as surrogate models and mutations to find new candidates; 

Characterize. DARWIN enables the discovery of new compounds and uncovers new chemical 

trends via unsupervised learning and feature-based ML methods.  

 

6.4 Materials Search 

 

I proceed with applying DARWIN to search for stable and direct UV bandgap materials 

(3eV - 4eV), a relatively unexplored and vast chemical space110,111. I expand the list of predicted 

candidates by executing the materials search multiples times using different random initializations, 

such that a larger space is covered. The initialization provides a distinct set of optimized crystal 

structures for each iteration, which I aggregate together to form the overall set of predicted 

materials. It is important to note that several structures may appear repeatedly as the algorithm 

converged to the local minima given the initialization or mutations that arrived to the 

corresponding solutions. In these cases, the average target value was taken for every candidate 

composition. I observed that structures of the form: ABX4, ABX3 and A2BX3 typically exhibited 
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the lowest predicted energy above hull indicating high stability. Examples of the top-ranking stable 

materials include the following list: Cs2SnBr4, Rb2SnBr4, Rb2CrBr4, CsScBr4, KInBr4, and 

K2CuCl3. These results highlight the elemental diversification among the predictions which can be 

achieved in such an evolutionary computing approach.   

DARWIN yields several promising UV structures from which I select ternary candidates 

with the A-site containing one of the common alkali metals {K, Rb, Cs} and the X-site be occupied 

one of the halogens {Cl, Br, I} for further analysis. This selection is implemented to enable ease 

of synthesis and due to limited precursor availability. To further assess the quality of the 

predictions, DFT bandgaps were calculated on the proposed set of candidates (Table 6.1). 

Evaluation of the mean absolute difference between the DARWIN bandgap and DFT-calculated 

bandgap of ternary crystal-based systems, suggests that those which contain Cu as a B-site cation 

exhibit high prediction accuracy. In the context of UV-bandgap materials, these findings illustrate 

high prediction precision for Cu-based systems positions them as the optimal choice of candidates 

to focus further analysis.  
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Table 6.1: DARWIN Predicted UV Materials and their ML Bandgaps with post-DFT HSE06 

Verification Calculations. 

 

Although DARWIN can lead us to interesting compositions quickly, it fails to rationalise 

the discovery of such materials. Graph based deep learning models also lack interpretation which 

limit the ability to discover new science and uncover interesting patterns101,109. Therefore, it is 

imperative to find the chemical features or insights which are the descriptors responsible for the 

predicted results to help guide experiment.  

 

6.5 Post-Prediction Analysis for Experimental Guidance 

 

I performed a manual feature analysis of the promising candidates generated by the 

evolutionary search. I examined features beyond those included as input to the GNN and found 

that DARWIN reconfirmed known descriptors predictive of bandgap, such as the A-site cations and 

halide choice in typical perovskite-based crystals. These results showed how prediction stability 

trends match the empirical tolerance factor t - a known proxy for stable perovskite materials112–114.  

Predicted 

Structural 

Formula 

Mean DARWIN  

Predicted Bandgap 

[eV] 

HSE Bandgap 

[eV] 

Absolute 

Difference 

[eV] 

2nd Element in 

Structure 

Mean 

Absolute 

Difference 

[eV] 

Cs2ZnCl4 3.49 3.45 0.04 

Zn 0.96 
Rb2ZnCl4 4.06 3.41 0.64 

CsZnCl3 3.40 2.60 0.80 

SrZnBr4 3.19 1.20 1.99 

CsZnBr3 3.55 4.87 1.32 

Rb2CuCl3 3.80 3.50 0.30 

Cu 0.19 

Cs2Cu1I3 3.52 3.77 0.25 

Rb2CuBr3 3.66 3.71 0.05 

CsCu2Br3 3.32 3.16 0.16 

K2CuCl3 3.66 3.54 0.12 

K2CuI3 3.63 3.82 0.19 

Rb2CuI3 3.69 3.45 0.24 

CsCu2Cl3 3.40 3.69 0.30 

RbCu2Cl3 3.31 3.47 0.16 

GaCuBr4 3.50 3.34 0.17 

ZnMg2Cl6 3.80 1.23 2.57 

Mg 1.50 
CsMgBr3 3.53 4.65 1.12 

CaMgBr4 3.84 3.10 0.74 

ZrMg2Br4 3.30 1.30 2.00 

SrMgBr4 4.00 2.93 1.07 
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I used a pair plot to qualitatively examine the relationships and distributions of the DARWIN 

predicted bandgap and energy above hull with respect to the calculated tolerance factor and the 

electronegativity of the B-site. The analysis was extended as a function of the A-site cation, as 

indicated by the three different cations K, Rb, Cs (pink, green, blue in Figure 6.7). Off-diagonal 

components of the Figure illustrate the relationship between the various parameters, whereas the 

diagonals show the parameter distribution of the predicted compounds dataset. This enabled me to 

establish general trends among the predictions, such as the increased peak bandgap of compounds 

which have K occupy the A-site. It is also observed that as the cation radii increases (K to Cs), the 

calculated tolerance factor increases as expected – tolerance factor and A-site size are linearly 

related. Surprisingly, I found a strong positive pair-wise relationship between the electronegativity 

of the B-site and the tolerance factor, suggesting that a particular range of electronegativity values 

potentially lead to stable materials. A similar parameter analysis was performed but as a function of 

the halide ion, supporting the qualitative trends found in stability of the predicted compounds (i.e., 

tolerance factor linearly related with anion radii, Figure 6.8). The trends I found related to B-site 

electronegativity led me to extend the feature analysis and investigate the difference in 

electronegativity (EN) of the B-site (the second most metallic element in the composition) and X-

site (most electronegative anion), which I denote as X-B.  
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Figure 6.7: Relationship between the predicted properties t = tolerance factor of interest as a 

function of the A-site cation choice. For calculating the tolerance factor, I used the atomic radii of 

the corresponding elements. I observe a strong positive pair-wise relationship between the 

electronegativity of the B-site cation and the tolerance factor – suggesting the relative importance 

of electronegativity as a proxy for stability in perovskite systems.  We further notice that this 

observation is valid for all three cations of choice (K, Rb, Cs). 
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Figure 6.8: Pair-wise relationship between the predicted properties of interest as a function of the 

X-site anion choice. I exhibit the exact same positive pair-wise relationship between the 

electronegativity of the B-site cation regardless of the choice of anion. The tolerance factor 

decreases steadily as the radii of the anion increases, as expected. Bromide based perovskites fall 

into the most “ideal” range of tolerance factors which are a proxy for stability. 

 

I found this newly designed measure to be a strong predictor of stability and plot the resulting 

proposed candidates as a function of the bandgap and energy above hull (Figure 6.9a). I 

specifically analyzed the “map” for all materials which had low energy above hull (< 0.10 eV) and 

classify the compounds by their corresponding X-B and B-site cation. I found that when X-B is 

within (0.95, 1.5), the material is a stable UV direct bandgap semiconductor (Figure 6.9b). I 

denote this specific range as the Optimal Electronegativity Difference Window (OEDW). The 

distribution of this metric is shown in Figure 6.9b. The inset graph shows the relative frequency 
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of the five most common elements which occupy the B-site of the ternary structures consisting of 

the aforementioned criteria.  
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Figure 6.9: a) Plot illustrates all proposed candidates which had at least 10 unique structures 

predicted by DARWIN. The predicted energy above hull and bandgap (mean of all structures 

containing the same formula) show how the varying B-site cation range spans the entire UV-space 

and that size of the dot reflects the X-B metric we developed. The results suggest an ideal value of 

1.2 in systems which comprise of {K, Cs, Rb} and {Cl, Br, I} as the A-site and X-site, respectively 

are the most optimal choice for combined stability and direct bandgap material. b) Distribution of 

the difference of electronegativity between B-site (second most metallic element in a ternary) and 

the halide among all the successful candidates. 
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Thus, empowered by the accurate ML models and design rules manually extracted via 

DARWIN, I narrowed our focus towards ternary UV-emitting systems. I narrow down the ternary 

candidates imposing the A-site to consist of common alkali metals {K, Rb, Cs} and the X-site to 

be occupied by a halogen species {Cl, Br, I}. Combining these predictions and experimental 

chemical intuition, I noticed that K2CuX3 and Rb2CuX3 (Figure 6.9b inset) are predicted to be UV 

emitters with bandgaps ranging from 3.1 eV to 3.7 eV. In particular, DFT simulations indeed verify 

the predicted optical properties of both K2CuCl3 and K2CuBr3 indicating direct bandgap materials. 

Further analysis of the elemental contributions in the orbitally-resolved projected density of states 

(PDOS) reveals that the halide species significantly contributes to the valence band maxima 

(VBM) of such materials and the B-cation dominates the conduction band minima (CBM) 

(Appendix B3 - Figure 1), thus rationalizing the observation that X-B is a good predictor of the 

bandgap. Specifically, I noticed that K+ does not contribute to the electronic structure of the in 

K2CuX3 materials and that the strong orbital interaction of the Cu and Cl species leads to the 

observed optical properties115,116.  

To assess the validity of these predictions, experimental verification was required. Here, I 

suggested that experiments be focused on K2CuCl3 and K2CuBr3 as initial validation sets given the 

availability of precursors and ease of solid-state chemical synthesis (see Appendix A3 for detailed 

synthesis conditions). This combined human interpretation of the proposed candidates leads to an 

improved directed and AI-guided approach.   

 

6.6 Experimental Realization 

 

K2CuCl3 and K2CuBr3 were synthesized via spin-coating with an intermediate anti-solvent 

dripping step (Appendix A.3 for detailed procedure) .117,118 The thin-films were then characterized 

for their optical and structural properties. The absorption spectrum (Figure 6.10, solid violet line) 

of K2CuCl3 shows an onset at 360 nm and a photoluminescence peak at 375 nm (Figure 6.10, 

dashed violet line). However, K2CuBr3 (Figure 6.10, blue lines) displays a strong absorption onset 

at roughly 404 nm and a photoluminescence peak at 420 nm. It is important to note that both 

materials exhibit a small Stokes-shift, an essential parameter for efficient light-emission. These 

values corroborate with the expected bulk bandgaps of the material and further confirm the original 

DFT verified calculations. 



 

75 

 

 

 

Figure 6.10: Absorption spectrum and PL profiles of K2CuBr3 and K2CuCl3 

Structural characterization is attained by measuring the x-ray diffraction profiles. The 

diffractograms both indicate high levels of crystalline material as evidenced by the sharp intense 

peaks. In particular, K2CuCl3 shows a crystallized structure with diffraction peaks at 14.08, 

14.70, 15.24 and 15.86, matching those of simulated bulk K2CuCl3 (Figure 6.11 top subplot 

with violet lines, Materials Project and ICSD-150293) and throughout the full range of 2. 

Similarly, K2CuBr3 observes strong diffraction peaks occurring at 13.46, 13.98 and 15.22, 

agreeing with bulk K2CuBr3 (Figure 6.11 bottom subplot with blue lines, Materials Project and 

ICSD-150293). 

The shift to larger 2 angles in K2CuCl3 relative to K2CuBr3 is expected as the rCl
- > rBr

-, 

and as previously reported – the expanded lattice leads to an increase in angles of diffraction.119 

This family of materials forms in the orthorhombic crystal arrangement and space group Pnma, 

exhibiting 1D chains of [CuX3]2- (X = Cl, Br), separated by K+ as shown in Figure 4a (similar to 

Rb2CuX3 systems)115,116. Coincidentally, previous reports have found these materials prevalent in 

X-ray scintillator applications116. DARWIN can clearly reproduce conventional materials 

discovery efforts underlining its significant applicability in materials research.  
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Figure 6.11: Simulated120 and experimental (powder) X-ray diffraction measurements of K2CuBr3  

and K2CuCl3 .   

6.7 Summary 

 

In this chapter I focused on the design of materials aided by the use of machine learning 

techniques – namely, deep learning and evolutionary computing. DARWIN demonstrates that a 

computational well-designed neural network enabled efficient, rapid and predictions which 

accelerate materials discovery and exploration. The manual post-prediction human analysis led to 

the construction of heuristic rules, which ultimately guided experimental efforts, and a previously-

underexplored set of semiconducting materials was identified. The results of this study offer a 

proof-of-concept principle for novel materials design. Future work on ML algorithms that account 

for overall device architecture will further increase the probability of success in predicting 

materials for application. 
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7 Conclusion 
 

 

In this thesis, I focused on the design of perovskite materials for light-emitting applications 

through experimental and computational methods. Here, I summarize the key results of each 

individual research project comprising this thesis and then provide an outline for future work to 

further advance the studies of perovskites as the next-generation of light-emitting materials for 

consumer display applications. I end with a list of my publications during my graduate studies.   

 

7.1 Summary of Findings  

 

I began by pursuing a colloidal synthesis strategy to create perovskite quantum dots for deep-

blue emission. I posited that a mixed-cation perovskite quantum dot would exhibit improved 

spectral stability while simultaneously modifying the optoelectronic bandgap. Pure perovskite 

quantum dots of CsPbCl3 or CsPbBr3 are known not to achieve the desired blue wavelengths, and 

thus prior researchers had relied on mixed systems of CsPbCl3-xBrx. However, these mixtures were 

widely observed to lead to large spectral shifts as a consequence of the halide segregation occurring 

in devices under applied bias. 

 I found that by introducing Rb+ directly during synthesis of CsPbBr3 nanocrystals I was able 

alloy and form RbxCs1-xPbBr3. The addition of Rb+ resulted in enlarging the bandgap of pure 

CsPbBr3 and shifting emission towards the blue. Additionally, the mixed-cation approach 

addressed the spectral instability of blue-emitting PQDs as a pure bromine perovskite crystal phase 

was retained. Blue perovskite quantum dots of various geometries were synthesized via 

modification of the reaction conditions to yield narrow emission linewidths. I found that RbxCs1-

xPbBr3 LEDs exhibited stable and narrow electroluminescence emissions, while simultaneously 

demonstrating record high luminance values at peak operating external quantum efficiencies: 93 

cd m-2 at 0.75% and 29 cd m-2 at 0.11% for sky-blue (490 nm) and deep-blue (464 nm) emission, 

respectively. This work shed light into the A-site compositional engineering of perovskites as a 

method to design blue emitting materials which lacked voltage-induced phase segregation and 

yielding colour-pure electroluminescence devices. 

I found that dimensionality reduction of 3D perovskite systems provided an additional route to 

blue-emitting materials. Modifying the dimensionality of quasi-2D perovskites, through a post-
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synthesis thin-film treatment, I was able to precisely control the fabrication of the quantum wells 

produced in the resulting material films – which addressed the major limitation of phase dispersion 

in the field of reduced dimensional perovskites. This method relied on organic phosphoryl 

compounds whose interactions with perovskite grain surfaces yielded narrow phase distributions 

of the perovskite composition. I found that DPPOCl in particular was an ideal molecule which 

stimulated the reaction kinetics, leading to precise and limited phase distributions with improved 

quantum yields, efficient charge funneling and narrowed the emission relative to conventional 

PbX2 precursor doped strategies. Materials characterizations and computational studies led to the 

development of the theoretical explanation and hypothesis of the hydrolysis reaction kinetics 

which resulted in the chlorine-insertion mechanism while simultaneously passivating the edge 

states. These findings explained the observed improvements in the optoelectronic properties. 

Based on these findings, steady-state devices were fabricated to illustrate the benefit of the 

dynamic strategy for bright and colour-pure blue-emitting perovskites. The DPPOCl treated 

perovskite LEDs exhibited improved lifetime stabilities and no wavelength shift between half and 

maximum luminance of the emission spectra under operation, with record high EQEs. In sum, this 

work developed insight of tailoring perovskite nanostructures for addressing spectral and operating 

stability – a combination which is essential for practical light-emitting applications.  

Although significant experimental research progress has been made in developing novel 

perovskites by compositional tuning, the vast combinations of elements hinder experimental 

efforts for high-throughput materials exploration. I then investigated the role of accelerated 

materials discovery by utilizing machine learning to predict perovskite compositions with desired 

properties. Typical computational methods rely on ab initio calculations to investigate novel 

compositions of perovskite systems, which are computationally expensive and inefficient when 

considering the size of the materials space. I address this by levering Deep Neural Networks to 

build a model which accurately predicts the optoelectronic properties and better relative to 

traditional DFT methods. These models were built and trained on a specific dataset, which then 

act as surrogates to an evolutionary algorithm utilizing them to rapidly search through materials 

space and predict compositions with the desired target properties. The approach enabled chemical 

insights such as the optimal electronegativity difference window of the B-site and X-site in ternary 

perovskites to be derived from the proposed candidate solutions, which enabled a focused 

approach towards experimental realization of these compounds. Ultimately, several of the 
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predicted compounds were successfully synthesized in the lab highlighting the relative importance 

of computational methods in the realm of materials discovery. It was estimated that approximately 

acceleration factors of 100-fold were attained using the method to search for materials when 

compared to traditional machine learning methods. Overall, this work represented a stepping stone 

towards the blend of experimental and computation methods for advancing research in the design 

of materials systems, particularly in ternary perovskites for light-emitting applications.   

 

7.2 Future Directions 

 

This work highlights strategies that can be implemented experimentally and computationally 

to advance the design of perovskite systems. The studies were particularly focused on the needs of 

displays. Although significant progress has been made in the area of PeLEDs, much remains to be 

studied and understood in this emerging class of materials which has gained a large interest in the 

past decade in terms of degradation mechanisms. Ultimately, for these materials to reach 

commercialization in consumer electronics it is imperative to develop not only materials but device 

architectures which enable high luminance, long operating lifetimes and colour-pure emissions.  

 

7.2.1 Advancing A-site alloyed systems for practical application 

 

In the context of A-site compositional engineering, recently research studies have 

implemented this strategy similarly in reduced dimensional perovskite systems97 and have found 

improved LED performance. In the context of PQDs, the studies I presented showed efficient and 

spectrally stable PeLEDs during a short-operating measurement. However, to fully realize the 

potential of the RbxCs1-xPbBr3 LEDs, I propose two avenues worth exploring: improvements in 

the efficiency by an order of tenfold in combination with long-term lifetime tests. Long-term 

lifetime tests entail measuring the luminance under constant current, or conversely set a constant 

luminance and modulate the voltage applied in the device to maintain this value. Studies of the 

degradation in performance would let one understand how the active material is affected in 

operation. I found in my work that although I was able to synthesize colloidal nanoplates with 

extremely narrow linewidths, but washing procedures to purify the nanocrystals would remove the 

long-chain ligands expose the surface of the PQDs with defects (trap states) and reduced PLQYs, 

and therefore lower EQEs. Therefore, post-passivation schemes such as treating the surface with 

short chain organic ligands, or conversely inorganic ligands (such as PbX2) would improve the 
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quality of the synthesized material. Recently, studies have shown that post-treatment and inorganic 

shelling techniques have significantly improved and led to highly efficient blue emission in 

perovskites.52,121 I expect that further research in the passivation schemes for PQDs to be one viable 

avenue of research which would advance the field of perovskites. Additionally, engineering the 

device architecture by investigating the optimal hole-transport and electron-transport layer and the 

role of degradation at the interfaces is also an area which requires much optimization and research 

effort. Specifically, optimal thickness of the device layers should be studied to enable efficient 

charge transport and result in efficient recombination.  

In application, toxicity is a concern, and research is underway to develop of heavy-metal-

free light emitters. Examples of materials which have shown promise include chalcogenide 

quantum dots such as InP, ZnSe, and also Cu-based perovskites and carbon based quantum dots.122 

Future impact of such technologies can be realized through fast scaling and manufacturing 

processes enabling the synthesis of large quantities of quantum dots, and fast and precise 

manufacturing of the PeLEDs. Economies of scale and road to commercialization can be 

accelerated if current manufacturing processes and techniques which are utilized in the production 

of OLEDs (ink-jet printing, roll-to-roll, etc) can be adopted with modest modification.   

 

7.2.2 Developing improved reduced dimensional perovskites  

 

My work on reduced dimensional perovskites highlighted the ability to modify and control 

the nanostructures formed during thin-film fabrication. This was only achieved by investigating a 

particular family of phosphonic chlorides which led to the improved performances. However, 

many organic molecules with different functional groups remain unexplored in these systems that 

may offer even further enhancements and tailored optoelectronic properties. Apart from the 

organic chlorides studied in this work, several groups have shown that ligand length and various 

functional groups of common alkylammonium molecules lead to improved phase control and fine 

tunability of perovskite emission.123–125 However, it has been observed that although this leads to 

improved device performance, long-term operation is still a limitation for the 2D and quasi-2D 

systems as they rely on these insulating organic molecules to design the particular quantum 

confined wells responsible for emission. Therefore, for achieving long operating lifetimes, further 

work should focus on potentially investigating the loss mechanisms which occur at the 

nanostructures grain boundaries of the fabricated thin-films. For these materials to compete with 
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current technologies in mobile displays, target operating lifetimes on the orders of 30,000 – 

100,000 hours at peak luminance values ranging between 500 – 1,000 cd m-2 should be the ultimate 

goal.  In particular, it would be worthwhile to design using a bilayer organic ligand approach to 

fine-tune and tailor the formation of nanostructures. In addition, an alternative strategy to yield 

efficient devices is to investigate organic molecules which simultaneously act as the organic spacer 

between the wells, but offer high conductivity and thereby potentially alleviating the need for an 

electron/hole transport layer in the resulting LED.  However, this is highly complex and would 

involve very specific engineering of the organic molecules from an energy band perspective. To 

augment materials development, device design for efficient photon extraction will go beyond the 

planar configuration, with its photon extraction losses. Introducing nanostructured cavities in 

future can help maximize photon extraction and improve device efficiency.  

 

7.2.3 The next-frontier of machine learning for applied materials discovery 

 

My contributions to machine learning for accelerated materials discovery advanced a 

method that levered high-quality datasets. Going forward, one avenue worth exploring is better 

deep learning models applied to predict material properties with much lower errors. In DARWIN, 

the input data was structured in a graph format, encoding all atomic information and crystal 

structure in a manual way. Elemental properties of the constituent atoms were used as input 

features, but to date there has been a lack of understanding which features are the most important 

for prediction of the optoelectronic and structural properties. It is therefore worthwhile to focus 

research efforts on finding an optimal representation of crystal structures for the training and 

prediction of optoelectronic properties. This would result in highly accurate models which could 

then be implemented as surrogate models for larger machine learning methods to efficiently and 

rapidly search through materials space. On that note, DARWIN in particular used an evolutionary 

algorithm which only used mutation as a means to produce the next set of proposed candidate 

solutions, however cross-over is another method that could be implemented and indeed produce 

improved results. The evolutionary algorithm, is a genetic algorithm but there are many other 

forms which can be introduced to lever the deep learned models and lead to far accelerated 

predictions of materials. Developing machine learning tools and post-analysis techniques to extract 

meaningful insights from a chemical and physical perspective is highly sought out by the materials 

science community. Intuitive understanding and design rules can then be developed and utilized 
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by experimentalists to help guide future work and pioneer the next set of semiconducting materials 

for light-emission. As observed with the Human Genome Project, the next revolution of materials 

design will incorporate a mixed approach whereby computational and experimental methods are 

implemented simultaneously and rely on one another to advance materials discovery as shown in 

Figure 7.1. 

 

  
Figure 7.1: Accelerated materials discovery roadmap illustrating the various components 

responsible for designing the next generation of materials. All components work symbiotically to 

advance the process, requiring focus and attention in various areas.  
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Appendices 
 

A. Methods 

 

A.1 Chapter 4 – Enabling Deep-Blue Emission in Perovskite Quantum Dots  

 

Experimental Methods 

Materials: All chemicals used are commercially available and were used as received without any 

additional purification steps: lead (II) bromide (PbBr2, Alfa-Aesar Puratronic, 99.998%), cesium 

carbonate (Cs2CO3, Sigma-Aldrich, 99%), rubidium carbonate (Rb2CO3, Sigma-Aldrich, 99%), 

oleic acid (OA, Sigma-Aldrich, 98%), oleylamine (OLA, Caledon), octadecene (ODE, Caledon), 

ethyl acetate (EtAc, anhydrous, Sigma-Aldrich, 99.8%), methyl acetate (MeAc, anhydrous, 

Sigma-Aldrich, 99.8%), hexane (anhydrous, Alfa-Aesar), octane (Alfa-Aesar) and chlorobenzene 

(anhydrous, Sigma-Aldrich). PEDOT: PSS (CleviosTM PVP Al 4083) was purchased from 

Heraeus. Poly-TPD was purchased from American Dye Source. 1,3,5-tris(N-phenylbenzimiazole-

2-yl)benzene (TPBi) was purchased from Lumtec.  

 

Synthesis of Rb-oleate: Rb2CO3 (0.430 g, 1.86 mmol, Sigma-Aldrich 99%) was added to ODE 

(20 mL) and OA (1.5 mL) in a 100 mL round-bottom flask. The mixture was heated to 120 C 

under vacuum and dried for 1 hour. Then, the flask was put under nitrogen and heated to 150 C 

for complete dissolution and formation of Rb-oleate.  

Synthesis of Cs-oleate: Cs2CO3 (0.433 g, 1.33 mmol, Sigma-Aldrich 99%) was added to ODE (20 

mL) and OA (1.25 mL) in a 100 mL round-bottom flask. The mixture was heated to 120 C under 

vacuum and dried for 1 h. Then, the flask was put under nitrogen and heated to 150 C for complete 

dissolution and formation of Cs-oleate.  

Synthesis of RbxCs1-xPbBr3 Nanocrystals: PbBr2 (0.068 g, 0.187 mmol, Alfa-Aesar, 99.99%) 

was dissolved in ODE (5 mL) along with oleic acid and oleyl amine (1:1 volumetric ratio, 1 mL 

each). The solution was degassed for a total of 1 h at 120 C, then switched over to a pure nitrogen 

environment and heated to 150 C to fully dissolve any remaining PbBr2. Upon heating, a 0.4 mL 

mixture of Rb-oleate (0.23 mL) / (0.17 mL) Cs-oleate solution was injected into this PbBr2 solution 

at various temperatures (120 – 150 C).  Nanoplates were synthesized by modifying the ratio of 
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OA:OLA from 1:1 to 2:1, yielding anisotropic growth. After 15 s of injection, the crude solution 

was cooled in an ice-water bath. In addition, the nanocrystals can be synthesized in a one-step 

precursor injection by simultaneously dissolving both Cs2CO3 (0.215 g) and Rb2CO3 (0.215 g) in 

ODE (20 mL) and OA (1.5 mL) in a 100 mL reaction flask and heated to same reaction conditions 

as for the individual oleate precursors. Then 0.4 mL of this mixed oleate solution is injected into 

the Pb-oleate solution.  

Purification of RbxCs1-xPbBr3 Nanocrystals: Upon cooling down to room temperature, the crude 

solution was collected, and centrifuged at 7830 rpm for 10 min. The resulting supernatant was 

discarded, and the precipitate containing the perovskite quantum dots was collected by 

redispersion in hexane (2 mL). A mixture of methyl acetate and ethyl acetate (1:1 volumetric, 6 

mL total) was added to precipitate the solubilized nanocrystals. The resulting mixture was then 

centrifuged once again at 7830 RPM for 5 min. The supernatant was discarded and the precipitate 

was redispersed into hexane or octane for further measurements.   

Photoluminescence (PL) and Absorption Measurements: Photoluminescence measurements 

were done using a Horiba Fluorolog Time-Correlated Single Photon Counting system equipped 

with UV/Vis/NIR photomultiplier tube detectors, dual grating spectrometers, and a 

monochromatized xenon lamp excitation source.  A pulsed UV laser diode (λ = 374 nm) was used 

to acquire the transient PL signal. Absolute PLQY values were measured by coupling a Quantum-

Phi integrating sphere to the Fluorolog system through optical fibres. All PLQY measurements 

followed published methods.126 Optical absorption measurements were carried out in a Lambda 

950 UV-Vis-IR spectrophotometer. 

X-ray Diffraction (XRD) Measurements: XRD measurements were conducted using a Rigaku 

MiniFlex 600 diffractometer (Bragg-Brentano geometry) equipped with a NaI scintillation counter 

detector and a monochromatized Cu Kα radiation source (λ = 1.5406 Å) operating at a voltage of 

40 kV and current of 15 mA. 

X-ray Photoelectron Spectroscopy (XPS) measurement: XPS measurements were carried out 

with the Thermo Scientific K-Alpha XPS system. An Al Kα source with a 400 µm spot size was 

used for measurements to detect photo-electrons at specific energy ranges to determine the 

presence of specific elements. 
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Electron Microscopy: Bright field and high angle annular dark field (HAADF) images were 

collected at an acceleration voltage of 300 kV using a Hitachi HF-3300 electron microscope. 

Elemental mapping was acquired by a Bruker energy dispersive x-ray spectroscopic detector.  

UPS Measurement: UPS spectra were measured on ITO substrates with high conductivity. 

Photoelectron spectroscopy was performed in a PHI5500 Multi-Technique system using non-

monochromatized He-I𝛼 radiation (hv = 21.22 eV). All the work function and valence band 

measurements were performed at a take-off angle of 88 º, with the base chamber pressure of 10-7 

Pa. A bias of -5 V was applied to measure the work function. 

LED fabrication: First 100 /sq ITO-coated glass substrates were sequentially cleaned by 

detergent, deionized water, acetone and isopropanol in an ultrasonic washer, then treated by 

ultraviolet ozone plasma for 5 min and employed as the anode. Then a solution of PEDOT: PSS 

was spin-coated at 500 rpm for 10 s then 4500 rpm for 90 s, followed by annealing on a hot plate 

at 150 C for 20 min in the air ambient. The substrates were cooled down and transferred into a 

nitrogen-filled glovebox. Poly-TPD (3.5 mg mL-1 in chlorobenzene) was spin-coated at 2000 rpm 

for 60 s (1000 rpm s-1 ramp) and annealed at 100 C for 10 min in a nitrogen-filled glovebox, 

leading to a thickness of roughly 10 nm. On top of this layer, perovskite QDs dispersed in octane 

(10 mg mL-1) were spin-coated at 2000 rpm for 60 s (1000 rpm s-1 ramp). Finally, the substrates 

were transferred into a high vacuum thermal evaporator, where TPBi (60 nm), LiF (1 nm) and Al 

(150 nm) were deposited thereon layer by layer through a shadow mask under a high vacuum of 

less than 10-4 Pa. The device active area was 6.14 mm2 as defined by the overlapping area of the 

ITO and Al electrodes. The devices were encapsulated before the measurements, using an 

ultraviolet curable resin (exposure under ultraviolet light for 20 s) and covered on the edges 

between the device and a transparent glass chip.  

LED evaluation: All devices were tested under ambient condition. The luminance versus voltages 

and the current density versus voltage characteristics were collected using a HP4140B 

picoammeter. The absolute EL power spectra were collected using an integrating sphere and an 

Ocean Optics USB4000 spectrometer by mounting of the devices on the wall of the integrating 

sphere. The EQEs were then calculated through the measured absolute EL power spectra and the 

current density.  
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A.2 Chapter 5 – Improving Spectral Stability in Perovskite LEDs 

 

Perovskite Fabrication. The precursor solution for the perovskite with a stoichiometry of 

PEA2Cs1.6MA0.4Pb3Br10 was prepared by dissolving PbBr2 (0.6 mol/L), CsBr (0.32 mol/L), MABr 

(0.08 mol/L) and PEABr (0.4 mol/L) in DMSO under continuous stirring for 40 min in a nitrogen-

filled glovebox at room temperature. The resulting clear and colourless solution was dripped onto 

the substrates after filtration, pre-spun at 1000 rpm for 10 s, then spin-coated at 5000 rpm for 60 

s. To fabricate the initial green-emitting perovskite, 0.5 mL of chloroform was dripped to promote 

crystallization after 30 s during the second step. The control PEA2Cs1.6MA0.4Pb3Br10-xClx (x = 1, 

2, or 3) were fabricated through similar steps, while the precursor solutions were prepared by using 

a mixture of PbCl2 partially replacing PbBr2 (the total concentration of Pb2+ is 0.6 mol/L), CsBr 

(0.32 mol/L), MABr (0.08 mol/L) and PEABr (0.4 mol/L). To fabricate the perovskites using a 

dynamic treatment, 0.5 mL of chloroform containing the organic chloride (DPPOCl, PPOCl2, 

PSO2Cl or PCOCl) was dripped onto the film and spin-coated after 30 s during the second step. 

Finally all the films were annealed on a hot plate at 90 oC for 5 min to remove the residual solvents. 

 

LED Fabrication. First the patterned low-conductivity ITO-coated glass substrates were 

sequentially cleaned by detergent, deionized water, acetone and isopropanol in an ultrasonic 

washer, then treated by ultraviolet ozone plasma for 5 min and employed as the anode. To prepare 

the PEDOT: PSS: PFI layer, a mixed solution of PEDOT: PSS and PFI (at the mass ratio of 1:1) 

was pre-spun at 500 rpm for 10 s then spin-coated 4500 rpm for 90 s, followed by annealing on a 

hot plate at 150 oC for 20 min in ambient condition. To prepare the PEDOT: PSS/ poly-TPD layer, 

the PEDOT: PSS solution was spin-coated at 4000 rpm for 60 s, annealed on a hot plate at 150 oC 

for 20 min in ambient condition. Later the poly-TPD solution (6 mg/mL in anisole) was spin-

coated at 5000 rpm for 60 s. Then the substrates were transferred into a nitrogen-filled glovebox, 

and the perovskite films were fabricated thereon as described above. Finally the substrates were 

transferred into a high vacuum thermal evaporator, where TPBi (30 nm), LiF (1 nm) and Al (150 

nm) were deposited thereon layer by layer through a shadow mask at a pressure below 10-4 Pa.  

 

PL Characterization. A Horiba Fluorolog system was used for PL characterization. Steady-state 

PL was measured with a monochromatized Xe lamp as the excitation source. A Time Correlated 

Single Photon Counting (TCSPC) detector and a pulsed UV S5 laser diode (Delta Diode 375, peak 
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wavelength 374 nm, 2 MHz) were used to acquire transient PL. An instrument response function 

of Δt = 0.13 ns provides a limit to the overall time resolution. Time-resolved emission spectra were 

recorded by measuring individual transient PL traces at increasing emission wavelengths. PL 

stability was measured in air using the laser diode (Delta Diode 375, peak wavelength 374 nm, 

100 MHz) with a peak power of 300 mW and average power of 1.8 mW. The spot size was ~0.01 

cm2, so the calculated excitation density was 180 mW/cm2. Absolute PLQY values were obtained 

by coupling a Quanta-Phi integrating sphere to the Fluorolog system through optical fiber bundles. 

All the PLQY measurements followed published methods.S7 Both excitation and emission spectra 

were measured for three cases: the sample directly illuminated by the excitation beam path in the 

integrating sphere, the sample offset within the integrating sphere from the beam path, and the 

empty sphere itself. For PLQY measurements, the Fluorolog was set to an excitation wavelength 

of 380 nm and a 2 nm bandpass for both the excitation and emission slits. Using these settings, the 

resulting spectra had high signal to noise ratios and provided an excitation intensity in a range of 

1~30 mW/cm2. The detector was calibrated for spectral variance with a Newport white light 

source. The excitation intensity was varied for intensity dependent PL spectra by changing the slit 

width on the Fluorolog monochromator. Excitation intensity was obtained by recording the power 

with an Ophir LaserStar Dual Channel Power and energy meter and by calculating the beam area 

through the known dispersion relations for the monochromator. 

 

XRD Measurement. XRD measurements were conducted using a Rigaku MiniFlex 600 

diffractometer (Bragg-Brentano geometry) equipped with a NaI scintillation counter detector and 

a monochromatized Cu Kα radiation source (λ = 1.5406 Å) operating at a voltage of 40 kV and 

current of 15 mA. The crystallite size was calculated using Scherrer Equation, 

𝜏 =𝐾𝜆/𝛽𝑐𝑜𝑠𝜃 

where τ is the mean size of the crystalline domains, which may be smaller or equal to the grain 

size; K is a dimensionless shape factor, with a value close to unity; λ is the Xray wavelength; β is 

the line broadening at half the maximum intensity, after subtracting the instrumental line 

broadening, in radians; and θ is the Bragg angle. 

 

TA measurement. A regeneratively amplified Yb: KGW laser (PHAROS, Light Conversion) was 

used to generate femtosecond laser pulses at a wavelength of 1030 nm as the fundamental beam 
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with a repetition rate of 5 kHz. The fundamental beam was passed through a beam splitter, where 

the majority of the beam was used to pump an optical parametric amplifier (ORPHEUS, Light 

Conversion) to serve as a narrow-band pump (pulse duration ~200 fs, bandwidth ~10 nm). The 

remaining part of the beam was focused into a translating sapphire crystal in order to generate a 

white light probe ranging between 400 and 800 nm. The pump and probe pulses were directed into 

a commercial transient absorption spectrometer (Helios, Ultrafast). The probe pulse was sent to a 

retroreflector mounted on a delay stage where multiple reflections off the retroreflector allowed 

for a delay relative to the pump pulse of up to 8 ns. Sample measurements were obtained with 

pump powers between 50 and 100 μW, and a spot size of 0.3 m2 (assumption-Gaussian beam 

profile). 

 

XPS Measurement. XPS measurements were carried out with the Thermo Scientific K-Alpha 

XPS system. An Al Kα source with a 400 μm spot size was used to detect photo-electrons at 

specific energy ranges to determine the presence of specific elements. XPS compositions were 

measured at two separate depth levels: the surface and ~30 nm depth. The samples were etched 

with a beam of 1 keV Ar+ ions at two intervals of 60 s at roughly a rate of 0.23 nm/s. After the 

etching was completed, measurements were performed. The chemical compositions were obtained 

by integration of the XPS spectra using the Thermo Advantage software. 

 

AFM Measurement. AFM measurements were performed with an Asylum Research Cypher 

AFM operated in AC mode in air. Imaging was done using ASYELEC-02 silicon probes with 

titanium-iridium coatings from Asylum Research. The probes had a typical spring constant of 42 

N/m. 

 

SEM Measurement. Top-view and cross-sectional SEM images were collected in secondary 

electron mode by a Hitachi SU5000. The measurements were operated at a voltage of 3 kV with a 

spot size of 3 and an intensity of 10. 

 

LED Evaluation. The device active area was 6.14 mm2 as defined by the overlapping area of the 

ITO and Al electrodes. The devices were encapsulated before the current density and luminance 

measurements, using an ultraviolet curable resin (exposure under ultraviolet light for 20 s) and 
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covered on the edges between the device and a transparent glass chip. All the devices were tested 

in ambient conditions. We used the LED measurement approach of Forrest et al. We took the 

angular dependence of the intensity and of the EL spectrum, into consideration by using an 

integrating sphere, which collects light emitted across angles. The current-voltage (I-V) 

characteristic was measured using a Keithley 6430 source meter. The absolute radiation flux for 

calculating the EQE, power efficiency and luminance was collected using an integrating sphere 

and an Ocean Optics USB4000 spectrometer, the system calibrated with the aid of a standard 

halogen lamp (Ocean Optics HL-2000). The device was mounted on the open aperture of the 

integrating sphere to allow the light emitted from the glass surface to be collected, while the 

emission from the substrate edges was not collected. When calculating the luminance, a 

Lambertian emission profile was assumed. We have reproduced the measurements multiple times 

and also for several repetitions of the same experiment. The operating lifetime was measured using 

fresh pixels in a nitrogen-filled glovebox without encapsulation. The device was driven by a 

Keithley 2400 source meter at a constant current, and the luminance intensity was measured with 

a commercial photodiode (Vishay Semiconductors BPW34). The current used to drive the device 

was first determined using the current density and luminance measurements. The photodiode was 

biased at 0 V and the photocurrent that proportional to the luminance was recorded at a 2 s interval. 
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A.3 Chapter 6 – Semiconductor Discovery Guided via Machine Learning   

 

Computational Methods 

Data Generation for ML 

For predicting stability and optoelectronic properties of the materials, we use DFT 

calculations to get energy above hull and bandgaps coupled with the direct/indirect nature of the 

band structure. We trained our modified Graph Neural Networks on total energy data obtained 

from the Materials Project on over 100,000 compounds and about 10,000 datapoints of 

direct/indirect bandgaps. The total energy values obtained from the Materials Project are based on 

Perdew-Burke-Ernzerhof exchange-correlation functional which has been shown to perform 

satisfactorily for predicting the stability of the compounds104,127,128. To train the bandgap regressor, 

we generated a small HSE06 exchange-correlation functional-based bandgap dataset. Here we 

performed DFT calculations using a -point sampling of the Brillouin zone on ~1,800 structurally 

relaxed geometries obtained from the Materials Project. We invoked the flat-band approximation 

for the bandgap dataset. Datasets are available online as Supplementary Information.  

General Crystal Graph Network Structure. 

We used the PyTorch framework and PyTorch-Geometric module to build the crystal 

graphs and implement the graph convolutional neural network models. The method to encode the 

crystal structures as graphs is a standard process previously reported in the literature100–102. Crystal 

structures are formatted as undirected graphs G:= {V, E} which represent nodes (n) as atoms and 

edges connecting the corresponding atoms as bonds, respectively. Each node and edge can have a 

corresponding feature vector, which fully describes the 2D planar representation of the crystal 

structure.  

In our network, we encode atomic features denoted ui (a particular set of physical and 

chemical features native to the atom at node i, refer to Supplementary Information for an 

exhaustive list) and a new edge feature vector labelled ei,j as the reciprocal distance between the 

connecting nearest neighbouring atoms i and j. Nearest neighbours at each node are selected by 

implementing a cut-off radius of 8Å, ensuring that only the local environment is considered. 

The resulting crystal graph allows for a convolutional neural network to be built on top. 

The general idea of a graph convolutional neural network is to take a graph as input; perform a 

particular convolution operation (consisting of a message and update step) based on the nodal and 

edge-based feature vectors, and output a new scalar or vector for each corresponding node and 
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edge. This convolution operation is repeated T iterations, at which point the newly updated features 

are then pooled together to obtain an aggregated prediction value by a read-out function. At each 

successive iteration, the nodal features are updated to incorporate long-range order from atoms 

outside of the initial cut-off radii; learning a feature vector that includes information from the 

surrounding environment and enabling accurate predictions of material properties inherent to the 

crystal structure.  The convolution operator for an atom feature vector ui, in this case,  

𝑢𝑖
𝑡+1 = 𝐶𝑜𝑛𝑣(𝑢𝑖

𝑡 , 𝑢𝑗
𝑡 , 𝑒𝑖𝑗), ∀ 𝑖, 𝑗 ∈ 𝐺 , 

where the indices i and j correspond to two atoms connected in graph G. The pooling operation to 

aggregate all of the newly learnt hidden nodal features to predict a value for a given crystal is 

shown below and is typically defined by a function such as the mean, maximum or sum: 

�̂� = 𝑃𝑜𝑜𝑙(𝑢𝑇) , ∀ 𝑢 ∈ 𝐺 

All code and models are available online as Supplementary Information. 

Predictive Graph-based Convolutional Neural Network Models. 

Bandgap Models 

Many studies have implemented various convolutional operators with success100,101,103,104, but here 

we use a complimentary set of convolutional graph neural networks as the basis for our predictive 

ML models. We design a specific convolution operation for the bandgap regressor shown below. 

Each crystal graph is fed into the network as an input; wherein the convolutional layer is defined 

by the following order of operations: the maximum vector after concatenation (⊕) of the current 

atoms feature vector (𝑢𝑖
𝑡), the product of each neighbouring (𝒩(𝑖)) atomic feature vectors (𝑢𝑗

𝑡) 

with the corresponding edge features (𝑒𝑖𝑗) at each iteration 𝑡. The 𝛾𝑡 represents the update function 

(typically defined by a multilayer perceptron (MLP) consisting of a non-linear activation function 

𝑔) and weight tensors 𝑊𝑠
𝑡 and 𝑏𝑡 which are learnt during the training steps for each convolutional 

layer.   

𝑢𝑖
𝑡+1 = 𝛾𝑡 [ max

𝑗∈𝒩(𝑖)
(𝑢𝑖

𝑡 ⊕ (𝑢𝑗
𝑡 ∙ 𝑒𝑖𝑗))] ,

∀ 𝑖, 𝑗 ∈ 𝐺

∀ 𝑡 ∈ {1, … , 𝑇}
   

𝑢𝑖
𝑡+1 = 𝑔 [ max

𝑗∈𝒩(𝑖)
(𝑢𝑖

𝑡 ⊕ (𝑢𝑗
𝑡 ∙ 𝑒𝑖𝑗)) 𝑊𝑠

𝑡 + 𝑏𝑡] ,
∀ 𝑖, 𝑗 ∈ 𝐺

∀ 𝑡 ∈ {1, … , 𝑇}
 

An output value is obtained by pooling all of the hidden nodal features using the mean pooling 

function which results in the prediction of a bandgap value �̂�𝑏𝑎𝑛𝑑𝑔𝑎𝑝. 
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�̂�𝑏𝑎𝑛𝑑𝑔𝑎𝑝 =
1

𝑛
∑ 𝑢𝑖

𝑇

𝑛

𝑖=1

, ∀ 𝑢 ∈ 𝐺 

To measure the accuracy of the ML models, we use the mean squared error as a cost/loss function. 

We seek to minimize the MSE during training which evaluates how well our predicted bandgap is 

with respect to the target values. We achieve this minimization by finding the optimal values for 

the weight and bias matrices in the corresponding convolutional layers.  

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2, ∀ 𝑖 ∈ 𝐺

𝑛

𝑖=1

  

We observed that a total of 4 convolutional layers and 2 fully connected dense layers were the 

most optimal choice of the network that led to accurate predictions of the bandgaps. The list of 

atomic features (Appendix B.3 Tables 1 and 2) and the best performing set are reported in the 

Supplementary Information. All features were normalized via standard ML procedures prior to the 

crystal graph generation to ensure comparable scalar magnitudes. Graphs were generated using the 

aforementioned process, enabling efficient and rapid batch training. Hyperparameters of the model 

were optimized which include: the size of each convolutional layer, choice of activation function, 

pooling layer, learning rate and weight decay. After hyperparameter optimization, we found the 

following parameters: Adam optimizer, a rectifying linear unit activation function, learning rate of 

0.01, weight-decay of 0.0005, 4 convolutional layers (consisting of 64, 64, 32, 16 output channels) 

resulted in a mean-absolute-error of 0.46 eV on validation data after 3000 epochs of training on a 

set of roughly 1,800 crystals. The best model was chosen and used as one of the surrogate models 

for the evolutionary algorithmic approach.  

Energy Models 

Using the same convolution expressions as the bandgap model, 4 convolutional layers with batch 

normalization and 2 fully connected dense layers were the best network that led to accurate 

predictions of the energy above hull. After hyperparameter optimization that the following 

parameters: Adam optimizer, a rectifying linear unit activation function, learning rate of 0.0001, 4 

convolutional layers (consisting of 64, 64, 64, 64 output channels) resulted in a mean-absolute-

error of 0.06 eV/atom on validation data after 2000 epochs of training on a set of roughly 100,000 

crystals (refer to SI for loss curves). 
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Direct-Indirect classification 

For the direct-indirect bandgap classification, we use a random forest classifier trained on global 

features generated using elemental compositions and Spacegroup information.  

Using statistical properties of elemental properties such as electronegativity and atomic mass, we 

generate a global representation using Matminer. TPOT was then employed to find the best hyper-

parameters.  The resulting ML pipeline achieved an F1-score of 0.8 on direct-indirect classification. 

(refer to SI table 3 for the list of the properties used, and SI note 4 for ML model parameters) 

 

Evolutionary Algorithm. 

The EA operates on a surrogate model composed of the three predictive ML models built for the 

various prediction and classification tasks. A selection criterion is designed for target material 

properties such as the bandgap value and stability. In general, the multi-step iterative process by 

which the evolutionary search is implemented is as follows: (1) initialization of primary candidates 

denoted as the initial generation; (2) prediction of material properties using the ML models; (3) 

evaluation of the current generation; (4) selection of the fittest candidates; and (5) mutations in the 

selected individuals, and developing a new generation of candidates. Over successive iterations, 

the evolutionary algorithm converges and outputs a set of candidates that are optimal given the 

current set of selection parameters.  Initialization: In the initialization step, we select a set of 

elements and generate an initial set of candidates based on the 200 crystal structure types and 7 

families. We select the bandgap and energy above hull which we would like to optimize for and 

set these search criteria. Prediction: Crystal graphs are generated via the aforementioned process 

and fed as inputs into the three pre-trained ML models to obtain prediction values for the bandgap, 

energy above hull, and direct-indirect classification. Evaluation: We evaluate each individual in 

the current generation given the loss metric as shown in the equation below which is a weighted 

sum of the squared loss for each individually predicted property and the target selection values, 

where 𝜆𝑖 are normalizing factors for each loss component. For the selection procedures, we set all 

the weights to be equal. We initialize with a population of 20 arbitrarily formed prototype 

structures, set the generations limit threshold at 200. Selection: Upon evaluating the loss, we rank 

all individuals by their loss in the current generation and discard the bottom-half and retain the 

remaining population. Mutation: We then proceed to make a mutation on each top-ranked 

individual in the population which we define as a single elemental substitution in the crystal 
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structure with the equivalent oxidation state to retain structural charge-neutrality. The new set of 

candidates is then added to the current top-ranked generating a new population and the process is 

repeated but now starting at evaluation. After multiple iterations the loss has plateaued, the EA 

proposes a set of candidate solutions that ideally match the initial selection criteria. The proposed 

crystal structures are then aggregated and collected to comprise of the candidate solutions for the 

given target conditions. This process is repeated (100 times in our experiments) for various 

selection criteria to span the varied bandgap range and design a set of candidate solutions for 

further analysis and experimental realization. 

ℒ = 𝜆1(�̂�𝑔𝑎𝑝 − 𝐸𝑔𝑎𝑝
𝑡𝑎𝑟𝑔𝑒𝑡

)
2

+ 𝜆2(�̂�ℎ𝑢𝑙𝑙 − 𝐸ℎ𝑢𝑙𝑙
𝑡𝑎𝑟𝑔𝑒𝑡

)
2

+ 𝜆3(�̂�𝑑𝑖𝑟𝑒𝑐𝑡 − 1)
2
 

 

Experimental Synthesis – Film Fabrication. 

Potassium halide (KX, X = I, Br, Cl), copper halide (CuX, X = I, Br, Cl), dimethylsulfoxide 

(DMSO) and dimethylformamide (DMF) were purchased from Sigma-Aldrich. Chloroform was 

purchased from DriSolv. All chemicals were used as received. The precursor solution was prepared 

by dissolving stoichiometric quantities of KX and CuX in a DMSO/DMF (25/75 % v/v) solution 

(0.5 M) under continuous stirring for 1 h at room temperature. The concentration of the chloride-

based precursor solution (in DMSO/DMF 75/25 % v/v) was limited to 0.2 M due to the low-

solubility of the precursors. Glass substrates were O2 plasma-treated to improve adhesion. The 

precursor solution was spin-coated onto the substrates via a two-step process: 1000 rpm for 10 s 

and 3000 rpm. for 60 s. During the second spin step, 0.5 mL of chloroform was poured onto the 

substrate. The films were then annealed at 110 °C for 10 min. All the samples were prepared in a 

glove box with N2 atmosphere in order to control the atmospheric conditions. 

 

Material characterization. 

X-ray diffractograms were recorded using a Rigaku MiniFlex 600 powder X-ray diffractometer 

equipped with a NaI scintillation counter and using monochromatized Cu Kα radiation 

(l=1.5406A ̊). UV−Vis absorption was measured using a Perkin Elmer LAMBDA 950 

UV/Vis/NIR spectrometer. PL measurements were collected using a UV-Vis USB 2000+ 

spectrometer (Ocean Optics). The samples were optically excited using a 355 nm frequency-tripled 

Nd:YAG laser with a pulse width of 2 ns and a repetition rate of 100 Hz 
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B. Figures 

 

B.1 Chapter 4 – Enabling Deep-Blue Emission in Perovskite Quantum Dots 

 

Figure 1. Time-resolved photoluminescence decay data of the synthesized PQDs dispersed in 

hexane. Control CsPbBr3 was used as a reference to compare our doping strategy. 

Table 1. Transient photoluminescence fits of radiative lifetime components of the synthesized 

solutions (RbxCs1-xPbBr3 cubes (150 C) and nanoplates (120 C)). A biexponential decay function 

was used to fit the photoluminescence decay.  

 

 

 

Solution 
Temperature  

[C] 
A1 

1 

[ns] 
A2 

2 

[ns] 

average 

[ns] 

CsPbBr3 150 0.865 7.031 0.0813 19.209 9.517 

RbxCs1-xPbBr3 135 0.863 5.472 0.0802 12.628 6.735 

RbxCs1-xPbBr3 120 0.371 2.351 0.6577 6.2971 5.610 
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Figure 2. STEM micrograph images (a) of sky-blue emitting perovskite quantum dots. EDX 

overlay spectra (b) and individual atomic mapping of PQDs indicating the presence of Cs, Rb, Pb 

and Br (c-f).  
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B.2 Chapter 5 – Improving Spectral Stability in Perovskite LEDs  

 

Table 1. Transition barriers for hydrolysis reaction involving organic chlorides 

calculated using NEB DFT. 

 

Note: The negative value of the reaction energy shows that the final hydroxide state is more stable 

and the hydrolysis reaction is favorable, however, the reaction may be still limited by the high 

kinetic barrier. For each hydrolysis reaction, two possible pathways were evaluated, the proton 

(H+) in H2O first attacking the chlorine or oxygen, and only the lowest barrier is reported here. 

These results show that DPPOCl and PPOCl2 react with H2O to release Cl-. 

 

 

Figure 1. XRD Profiles of the various organophosphoryl chlorides in the reduced dimensional 

perovskite film.  
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Figure 2. TA spectra of perovskites PEA2Cs1.6MA0.4Pb3Br10 treated with 10 mg/mL DPPO, 

MPPO, or TPPO (measured at 10 ps). 
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Figure 3. TA spectra of control PEA2Cs1.6MA0.4Pb3Br7Cl3 (x = 3, dash line in a) and perovskites PEA2Cs1.6MA0.4Pb3Br10 treated with 

30 mg/mL DPPOCl (solid line in b) reported at 1, 5, and 10 ps delay following photoexcitation pulse. 
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Figure 4. Cross-sectional SEM image of LEDs with a structure of ITO/ PEDOT: PSS: PFI (~200 

nm)/ Perovskite (~60 nm)/ TPBi (~30 nm)/ LiF/ Al (~150 nm). 
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B.3 Chapter 6 – Semiconductor Discovery Guided via Machine Learning  

 

 

Tables 1 & 2 | Data: Atomic features lists. 

Lists of the atomic features used in the regression models. Prior to regression all of the features 

were scaled in the particular graphs dataset to a [0,1] scale by the minimum-maximum method 

(xscaled = (xold – xmin)/(xmax – xmin)). 
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Figure 1: Band structure and Density of States (DOS) for K2CuBr3. 

Using HSE06 exchange-correlation functional, we perform DFT calculations for calculation of 

band structure and density of states for K2CuBr3. 
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